chứng minh rằng 5^2017 + 5^2018 - 5^2019 chia hết cho 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(4\equiv1\left(mod3\right)\)
\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)
\(\Rightarrow4^{2018}-1⋮3\)
b, Ta có: \(5\equiv1\left(mod4\right)\)
\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)
\(\Rightarrow5^{2019}-1⋮4\)
c, \(4\equiv-1\left(mod5\right)\)
\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)
\(\Rightarrow4^{2019}+1⋮5\)
d, \(5\equiv-1\left(mod6\right)\)
\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)
\(\Rightarrow5^{2017}+1⋮6\)
1. Vì \(4\) chia \(3\) dư \(1\)
\(\Rightarrow4^{2018}\) chia \(3\) dư \(1^{2018}=1.\)
\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)
A = 52020 + 52019 + 52018 + 52017
= 52016( 54 + 53 + 52 + 5 )
= 52016.780
Vì 780 chia hết cho 65 => 52016.780 chia hết cho 65
=> A chia hết cho 65 ( đpcm )
Đặt \(K\left(x\right)=P\left(x\right)-\left(x+1\right)\)
\(\Rightarrow K\left(2016\right)=K\left(2017\right)=K\left(2018\right)=K\left(2019\right)=0\)
Vì P(x) có hệ số của bậc cao nhất bằng 1 nên K(x) cũng có hệ số của bậc cao nhất bằng 1
Do đó K(x) có dạng \(\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
Lúc đó \(P\left(x\right)=\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
\(+\left(x+1\right)\Rightarrow P\left(2020\right)=2045⋮5\)
Vậy P(2020) là một số tự nhiên chia hết cho 5 (đpcm)
n có 3 dạng tổng quát là: 3k ; 3k + 1 ; 3k + 2 (k ∈ N)
Trường hợp 1: n = 3k
Thay n = 3k vào n + 2019, ta có:
n + 2019 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2019)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (1)
Trường hợp 2: n = 3k + 1
Thay n = 3k + 1 vào n + 2018, ta có:
n + 2018 = 3k + 1 + 2018 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2018)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (2)
Trường hợp 3: n = 3k + 2
Thay n = 3k + 2 vào n + 2017, ta có:
n + 2017 = 3k + 2 + 2017 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2017)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (3)
Từ (1) ; (2) và (3) =>(n + 2017)(n + 2018)(n + 2019)⋮3 với mọi n ∈ N
Vậy (n + 2017)(n + 2018)(n + 2019)⋮3 (đpcm)
a) 4\(^{2019}\)+ 1 = 4\(^{2016}\). 4\(^3\)+ 1 = ...6 . 64 + 1 = ....4 + 1 = ....5 \(⋮\) 5
(các số tận cùng là 4 khi nâng lũy thừa bậc 4n đều có chữ số tận cùng là 6)
a/ 4^2019 + 1
= (4^2)^1009 x 4 + 1
= (.....6)^1009 x 4 + 1
= .....6 x 4 + 1
= ......4 + 1
= .....5
Vì 4^2019 + 1 có tận cùng là 5
Suy ra 4^2019 + 1 chia hết cho 5
Vậy 4^2019 + 1 chia hết cho 5
b/ 5^2017 + 1
= ( 5^2 ) ^1008 x 5 + 1
= 25^1008 x 5 + 1
hay = 25.25.25....25 x 5 + 1 ( có tất cả 1008 thừa số 25 ) ......... Tự làm nha!
= 5^2017( 1+5-5^2)
=5^2017. (-19) chia hết cho 19
\(5^{2017}+5^{2018}-5^{2019}=5^{2017}\left(1+5-5^2\right)=5^{2017}\left(-19\right)⋮19\)