Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 52020 + 52019 + 52018 + 52017
= 52016( 54 + 53 + 52 + 5 )
= 52016.780
Vì 780 chia hết cho 65 => 52016.780 chia hết cho 65
=> A chia hết cho 65 ( đpcm )
n có 3 dạng tổng quát là: 3k ; 3k + 1 ; 3k + 2 (k ∈ N)
Trường hợp 1: n = 3k
Thay n = 3k vào n + 2019, ta có:
n + 2019 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2019)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (1)
Trường hợp 2: n = 3k + 1
Thay n = 3k + 1 vào n + 2018, ta có:
n + 2018 = 3k + 1 + 2018 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2018)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (2)
Trường hợp 3: n = 3k + 2
Thay n = 3k + 2 vào n + 2017, ta có:
n + 2017 = 3k + 2 + 2017 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2017)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (3)
Từ (1) ; (2) và (3) =>(n + 2017)(n + 2018)(n + 2019)⋮3 với mọi n ∈ N
Vậy (n + 2017)(n + 2018)(n + 2019)⋮3 (đpcm)
S= (5 +5^2+5^3) +(5^4+5^5+5^6)+...+(5^2017+5^2018+5^2019)
=5(1+5+5^2)+5^4(1+5+5^2)+...+5^2017(1+5+5^2)
=5.31+5^4.31+...+5^2017.31
=31.( 5+5^4+...+5^2017) chia hết cho 31 (đpcm)
= 5^2017( 1+5-5^2)
=5^2017. (-19) chia hết cho 19
\(5^{2017}+5^{2018}-5^{2019}=5^{2017}\left(1+5-5^2\right)=5^{2017}\left(-19\right)⋮19\)