Cho tam giác ABC cân tại A, đường cao AD. Kẻ DH vuông góc với AC tại H, gọi I là trung điểm của DH. Chứng minh AI vuông góc với BH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}DI=IH\\HM=MC\end{matrix}\right.\Rightarrow IM\) là đtb tam giác DHC
\(\Rightarrow IM//DC\)
Mà \(AD\perp DC\Rightarrow IM\perp AD\)
\(b,\Delta ADC\) có \(DH\) là đường cao \(\left(DH\perp AC\right)\), \(MI\) là đường cao \(\left(MI\perp AD\right)\), \(MI\cap DH=I\) nên \(I\) là trực tâm
Vậy \(AI\perp DM\)
hình tự kẻ:33333
a) xét tam giác BAD và tam giác BHD có
B1=B2(gt)
BD chung
BAD=BHD(=90 độ)
=> tam giác BAD= tam giác BHD(ch-gnh)
=> AB=BH( hai cạnh tương ứng)
b) từ tam giác BAD =tam giácBHD=> AD=AH( hai cạnh tương ứng)
áp dụng điịnh lý pytago vào tam giác vuông HDC=> DC^2=DH^2+HC^2
=> DC^2>DH^2
=>DC^2>AD^2
=> DC>AD
c) xét tam giác BAC và tam giác BHKcó
AB=HB(cmt)
BAC=BHK(=90 độ)
B chung
=> tam giác BAC= tam giác BHK(gcg)
=> AK=AC( hai cạnh tương ứng)
=> tam giác BKC cân B
1: Xét ΔHDC có
M là trung điểm của HF
I là trung điểm của HD
Do đó: MI là đường trung bình của ΔHDC
Suy ra: MI//DF
hay MI//BC
2: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến ứng với cạnh đáy BC
nên AD là đường trung trực của BC
Ta có: MI//BC
AD\(\perp\)BC
Do đó: MI\(\perp\)AD
Gọi M là trung điểm của HC
Tam giác ABC cân tại A có AD là đường cao nên cũng là trung tuyến nên BD = CD
Kết hợp với HM = CM (theo cách chọn điểm phụ) suy ra DM là đường trung bình của tam giác HBC
Do đó, DM // BH (1)
Ta có MI là đường trung bình của tam giác HDC nên IM // DC
Mà AD vuông góc DC nên IM vuông góc AD
Tam giác ADM có hai đường cao MI và BH cắt nhau tại I nên I là trực tâm của tam giác ADM
Suy ra AI là đường cao còn lại của tam giác ADM nên AI vuông góc DM.(2)
Từ (1) và (2) suy ra AI vuông góc BH (đpcm)