tính giá trị biểu thức
A, ( 1-1/2) (1 - 1/4 ) ( 1-1/5 ) ........(1- 1/2018) (1/2019)
giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>M=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{2020}{2019}\)
\(=>M=\frac{2020}{2}=1010\)
\(M=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2018}\right)\left(1+\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{2019}{2018}.\frac{2020}{2019}\)
\(=\frac{2020}{2}\)
\(=1010\)
Study well ! >_<
\(A=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(A=1+\left(1+\frac{2017}{2}\right)+\left(1+\frac{2016}{3}\right)+...+\left(1+\frac{1}{2018}\right)\)
\(A=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(A=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
Ta có: \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)
Theo bài ra, ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2017.2018.2019}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2017.2018.2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2017.2018}-\frac{1}{2018.2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2018.2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2018.2019}\right)\)
Giải thích:
\(\frac{2}{1.2.3}=\frac{3}{1.2.3}-\frac{1}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)
\(\frac{2}{2.3.4}=\frac{4}{2.3.4}-\frac{2}{2.3.4}=\frac{1}{1.2}-\frac{1}{3.4}\)
................................................................................
\(\frac{2}{2017.2018.2019}=\frac{2019}{2017.2018.2019}-\frac{2017}{2017.2018.2019}=\frac{1}{2017.2018}-\frac{1}{2018.2019}\)
2020/2019 x 2019/2018 x 2018/2017 x....................3/2
= 2020/2
= 1010
a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)
=1-2/4=1/2
b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)
c: x-y=0 nên x=y
\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)
=2019
\(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}=\frac{1}{2}\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}=\frac{\sqrt{2}-1}{2}\)
\(\Leftrightarrow2x+1=\sqrt{2}\)
\(\Leftrightarrow4x^2+4x-1=0\)
Giờ thế vô A đi
bạn ơi cho hỏi sao chỗ kia từ dòng số 2 sao xuống dòng số 3 được vậy
Trả lời
A=(1-1/2)(1-1/4)(1-1/5).....(1-1/2018)(1-1/2019)
=1/2.3/4.4/5......2017/2018.2018/2019
=1/2.1/2019
=1/4038.
Nhưng theo mk nghĩ đề phải như thế này>
A=(1-1/3)(1-1/4)(1-1/5)........(1-2018)(1-2019)
=2/3.3/4.4/5......2017/2018.2018/2019
=2/2019.
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2018}\right)\left(\frac{1}{2019}\right)\)
\(=\frac{1}{2}.\frac{3}{4}.\frac{4}{5}.....\frac{2017}{2018}.\frac{1}{2019}=\frac{1}{2}.\frac{3}{2018}.\frac{1}{2019}=\frac{1}{2716228}\)
Vậy\(A=\frac{1}{2716228}\)