Tìm giá trị nhỏ nhất của biểu thức:
P=|x-2018|+(y+2019) mũ 2108+2020
Giúp mình vs mình đang cần gấp lắm!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(Q\left(x\right)=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|x-2019\right|\right)\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|2019-x\right|\right)\)
Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có :
\(\left|x-2017\right|+\left|2019-x\right|\ge\left|x-2017+2019-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\left(x-2017\right)\left(2019-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-2017\ge0\\2019-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2017\\x\le2019\end{cases}}}\)
\(\Rightarrow\)\(2017\le x\le2019\)
Trường hợp 2 :
\(\hept{\begin{cases}x-2017\le0\\2019-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2019\end{cases}}}\) ( loại )
Suy ra : \(Q\left(x\right)=\left|x-2018\right|+2\ge2\)
Dấu "=" xảy ra khi \(\left|x-2018\right|=0\)
\(\Leftrightarrow\)\(x-2018=0\)
\(\Leftrightarrow\)\(x=2018\) ( thoã mãn \(2017\le x\le2019\) )
Vậy giá trị nhỏi nhất của \(Q\left(x\right)=2\) khi \(x=2018\)
Chúc bạn học tốt ~
A = | x - 2015 | +| x - 2016 |
A = | x - 2015 | + | 2016 - x |
A = | x - 2015 | + | 2016 - x | \(\ge\)| x - 2015 + 2016 - x |
A = | x - 2015 | + | 2016 - x | \(\ge\)1
Dấu = xảy ra\(\Leftrightarrow\)x - 2015 = 0 ; 2016 - x = 0
\(\Rightarrow\)x = 2015 hoặc x = 2016
Min A = 1 \(\Leftrightarrow\)x = 2015 hoặc x = 2016
\(A=\left|x-10\right|+2021\ge2021\forall x\)
Dấu '=' xảy ra khi x=10
1) \(A=23+\left|2x-\frac{1}{3}\right|\)
Ta có: \(\left|2x-\frac{1}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|2x-\frac{1}{3}\right|+23\ge23\forall x\)
\(A=23\Leftrightarrow\left|2x-\frac{1}{3}\right|=0\Leftrightarrow2x-\frac{1}{3}=0\Leftrightarrow2x=\frac{1}{3}\Leftrightarrow x=\frac{1}{6}\)
Vậy Amin=23 \(\Leftrightarrow x=\frac{1}{6}\)
Câu b, câu c tương tự
2) \(\left|x-3,5\right|+\left|y-1,3\right|=0\)
Ta có: \(\orbr{\begin{cases}\left|x-3,5\right|\ge0\forall x\\\left|y-1,3\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-3,5\right|+\left|y-1,3\right|\ge0\forall x\)
Mà \(\left|x-3,5\right|+\left|y-1,3\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left|x-3,5\right|=0\\\left|y-1,3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3,5=0\\y-1,3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3,5\\y=1,3\end{cases}}}\)
Vậy x=3,5 ; y=1,3