chứng minh rằng không tồn tại số tự nhiên n để cho giá trị của biểu thức n^6-n^4-2n^2+9 chia hết cho giá trị của biểu thức n^4+n^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
a: \(\left(a+2\right)^2-\left(a-2\right)^2\)
\(=a^2+4a+4-a^2+4a-4=8a⋮4\)
b: \(\Leftrightarrow n^3-n^2+3n^2-3n+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;0;3;-1\right\}\)
Ta có : n3 - 2n + 3n + 3
= n3 - n + 3
= n(n2 - 1)
= n(n - 1)(n + 1) + 3
Để n3 - 2n + 3n + 3 chia hết cho n - 1
=> n(n - 1)(n + 1) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
=> n = {-2;0;2;4}
a) Lấy 2m+1-2(m-1)\(⋮\)2m+1.
Tìm các giá trị của 2m+1 rồi tìm m
b) Theo đề bài => /m/<2 để /3m-1/<3
a)m-1 chia hết 2m+1
suy ra 2(m-1) chia hết cho 2m+1
\(\Rightarrow\)2m-2\(⋮\)2m+1
\(\Rightarrow\)2(m-1+1)-2\(⋮\)2m+1
Ta có: \(n^6-n^4-2n^2=n^6+n^4-2n^4-2n^2=\left(n^4+n^2\right)\left(n^2-2\right)\)
chia hết cho \(n^4+n^2\).
Để \(n^6-n^4-2n^2+9⋮n^4+n^2\)
\(\Rightarrow9⋮n^4+n^2\)
\(\Leftrightarrow n^4+n^2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Vì \(n^4+n^2=n^2\left(n^2+1\right)\ge0\)
\(\Rightarrow n^4+n^2=\left\{1;3;9\right\}\)
Ta có bảng sau:
Vậy không tồn tại số tự nhiên n thỏa mãn đề bài.
\(A=n^6-n^4-2n^2+9\)
\(=n^2\left(n^4+n^2\right)-2\left(n^4+n^2\right)+9\)
\(=\left(n^2-2\right)\left(n^4+n^2\right)+9\)
Do đó : \(A⋮n^4+n^2\Leftrightarrow9⋮n^4+n^2\)
+ \(n^4+n^2=n^2\left(n^2+1\right)⋮2\) ( tích 2 số nguyên liên tiếp chia hết cho 2 )
\(\Rightarrow9⋮̸n^4+n^2\Rightarrow A⋮̸n^4+n^2\)