cho tổng s= 3 mũ 1+3 mũ 2+3 mũ 3+......+3 mũ 2017+3 mũ 2018+3 mũ 2019
chứng minh tổng s chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(S=3+3^2+3^3+...+3^{2019}\)
\(\Rightarrow3S=3^2+3^3+3^4+...+3^{2020}\)
\(\Rightarrow3S-S=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+...+3^{2019}\right)\)
\(\Rightarrow2S=3^{2020}-3\)
\(\Rightarrow S=\frac{3^{2020}-3}{2}\)
từng số hạng của tổng S chia hết cho 3 nên tổng S chia hết cho 3
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
\(S=1+2+2^2+2^3+.....+2^{11}\)
\(2S=2+2^2+2^3+.....+2^{12}\)
\(2S-S=\left(2+2^2+2^3+.....+2^{12}\right)-\left(1+2+2^2+2^3+.....+2^{11}\right)\)
\(S=2+2^2+2^3+.....+2^{12}-1-2-2^2-2^3-.....-2^{11}\)
\(S=2^{12}-1\)
Ta có : S=3+3^3+3^5+3^7+.....+3^2013+3^2015
= ( 3 + 3^3 + 3^5 ) + ( 3^7 + 3^9 + 3^11)+.....+( 3^2011 + 3^2013 + 3^2015)
= 3.(1+3^2+3^4)+3^7.(1+3^2+3^4)+.....+3^2011.(1+3^2+3^4)
= 3.91+3^7.91+......+3^2011.91
= (3+3^7+.....+3^2011).91
Vì 91 chia hết cho 13 => (3+3^7+.....+3^2011).91 chia hết cho 13
Vậy S chia hết cho 13
b1
ta có : n+4 = (n+1)+3
=>n+1+3 chia hết cho n+1
vì n+1 chia hết cho n+1
=>3 chia hết cho n+1
=> n+1 chia hết cho 3
=> n+1 thuộc Ư 3 =[1;3]
=> n+1=1 n+1=3
n =1-1 n =3-1
n =0 n =2
vậy n thuộc [0;2]
#)Giải :
\(S=3+3^2+3^3+...+3^{2019}\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)
\(S=3\left(1+3+9\right)+3^2\left(1+3+9\right)+...+3^{2017}\left(1+3+9\right)\)
\(S=13\left(3+3^3+...+3^{2017}\right)\)chia hết cho 3 ( đpcm )
s = 3^1 +3^2 + 3^3 +....+ 3^2017 + 3^2018 + 3^2019
= ( 3^1 +3^2 + 3^3) +...+ ( 3^2017 + 3^2018 + 3^2019 ) ( 2019 : 3 =673 # chia hết nên có thể ghép cặp như vậy)
= 3( 1+ 3 +3^2 )+ 3^4( 1+ 3 +3^2)+...+ 3^2017( 1+ 3 +3^2) ( háp dụng tính chất phân phối)
= 13( 3+ 3^4+....+3^2017) => chia hết cho 13
học tốt