Bài toán : So sánh A và B
\(A=\frac{2018^{100}}{1+2018+2018^2+...+2018^{100}}\)
\(B=\frac{2019^{100}}{1+2019+2019^2+...+2019^{100}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)
\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)
2
\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)
\(=\frac{100^{100}+1}{100^{99}+1}=N\)
\(A=\frac{100^{2017}+1}{100^{2018}+1}\)
\(\Rightarrow100A=\frac{100\cdot\left[100^{2017}+1\right]}{100^{2018}+1}\)
\(\Rightarrow100A=\frac{100^{2018}+100}{100^{2018}+1}\)
\(\Rightarrow100A=\frac{100^{2018}+1+99}{100^{2018}+1}\)
\(\Rightarrow100A=1+\frac{99}{100^{2018}+1}\)
\(B=\frac{100^{2018}+1}{100^{2019}+1}\)
\(\Rightarrow100B=\frac{100\cdot\left[100^{2018}+1\right]}{100^{2019}+1}\)
\(\Rightarrow100B=\frac{100^{2019}+100}{100^{2019}+1}\)
\(\Rightarrow100B=\frac{100^{2019}+1+99}{100^{2019}+1}\)
\(\Rightarrow100B=1+\frac{99}{100^{2019}+1}\)
Tự so sánh
\(A=\frac{100^{2017}+1}{100^{2018}+1}\)
\(\Rightarrow100A=\frac{100^{2018}+100}{100^{2018}+1}\)
\(\Rightarrow100A=\frac{100^{2018}+1+99}{100^{2018}+1}\)
\(\Rightarrow100A=\frac{100^{2018}+1}{100^{2018}+1}+\frac{99}{100^{2018}+1}\)
\(\Rightarrow100A=1+\frac{99}{100^{2018}+1}\)(1)
\(B=\frac{100^{2018}+1}{100^{2019}+1}\)
\(\Rightarrow100B=\frac{100^{2019}+100}{100^{2019}+1}\)
\(\Rightarrow100B=\frac{100^{2019}+1+99}{100^{2019}+1}\)
\(\Rightarrow100B=\frac{100^{2019}+1}{100^{2019}+1}+\frac{99}{100^{2019}+1}\)
\(\Rightarrow100B=1+\frac{99}{100^{2019}+1}\)(2)
Từ (1) và (2) suy ra 100A > 100B hay A > B
\(A=\frac{2018^{2019}-1}{2018^{2019}+1}=\frac{2018^{2019}+1-2}{2018^{2019}+1}=\frac{2018^{2019}+1}{2018^{2019}+1}-\frac{2}{2018^{2019}+1}=1-\frac{2}{2018^{2019}+1}\)
\(B=\frac{2018^{2019}}{2018^{2019}+2}=\frac{2018^{2019}+2-2}{2018^{2019}+2}=\frac{2018^{2019}+2}{2018^{2019}+2}-\frac{2}{2018^{2019}+2}=1-\frac{2}{2018^{2019}+2}\)
Ta có: \(\frac{2}{2018^{2019}+1}>\frac{2}{2018^{2019}+2}\)
\(\Rightarrow1-\frac{2}{2018^{2019}+1}< 1-\frac{2}{2018^{2019}+2}\)
\(\Rightarrow A< B\)
Vậy .....
B= 1/1.2+1/2.3+...+1/2019.2020
B=1/1-1/2+1/2-1/3+...+1/2019-1/2020
B=1-1/2020=2020/2020-1/2020=2019/2020
\(2018^{100}+2018^{99}\)
\(=2018^{99}.\left(2018+1\right)\)
\(=2018^{99}.2019\)\(< 2019^{99}.2019=2019^{100}\)
\(\Rightarrow2018^{100}+2018^{99}< 2019^{100}\)
Vậy \(2018^{100}+2018^{99}< 2019^{100}\)
~~Hok tốt~~
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\)
Với : \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\)
Và : \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\)
\(B=1-\frac{1}{2020}< 1< A\)
Bài toán : So sánh A và B
\(A=\frac{2018^{100}}{1+2018+2018^2+...+2018^{100}}\)
+) Ta có \(\frac{1}{A}=\frac{1+2018+2018^2+...+2018^{100}}{2018^{100}}\)
\(=\frac{1}{2018^{100}}+\frac{2018}{2018^{100}}+\frac{2018^2}{2018^{100}}+...+\frac{2018^{100}}{2018^{100}}\)
\(=\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1\)
\(B=\frac{2019^{100}}{1+2019+2019^2+...+2019^{100}}\)
+) Ta có \(\frac{1}{B}=\frac{1+2019+2019^2+...+2019^{100}}{2019^{100}}\)
\(=\frac{1}{2019^{100}}+\frac{2019}{2019^{100}}+\frac{2019^2}{2019^{100}}+...+\frac{2019^{100}}{2019^{100}}\)
\(=\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)
+) \(\frac{1}{2018^{100}}>\frac{1}{2019^{100}}\)
\(\frac{1}{2018^{99}}>\frac{1}{2019^{99}}\)
.....................................
\(1=1\)
\(\Rightarrow\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1>\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)
\(\Rightarrow\frac{1}{A}>\frac{1}{B}\)
\(\Rightarrow A< B\)
Vậy \(A< B\)