K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

\(N=\frac{7}{x-1}\)

=> x-1 thuộc Ư(7)={-1,-7,1,7}

=> n thuộc {0,-6,2,8}

\(P=\frac{x+1}{x-1}\Leftrightarrow P=\frac{x-1+2}{x-1}\Leftrightarrow P=\frac{x-1}{x-1}+\frac{2}{x-1}\Leftrightarrow P=1+\frac{2}{x-1}\)

=> x-1 thuộc Ư(2)={-1,-2,1,2}

=> n thuộc {0,-1,2,3}

18 tháng 6 2019

\(M=\frac{x+2}{3}\)nguyên

\(\Leftrightarrow x+2⋮3\)

\(\Rightarrow x+2\in B\left(3\right)=\left\{0;\pm3;\pm6;...\right\}\)

\(\Rightarrow x\in\left\{-2;1;-5;4;-8;...\right\}\)

Vậy....

20 tháng 8 2016

c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)


 

6 tháng 7 2016

b.

\(\frac{7}{x-1}\in Z\)

\(\Rightarrow7⋮x-1\)

\(\Rightarrow x-1\inƯ\left(7\right)\)

\(\Rightarrow x-1\in\left\{-7;-1;1;7\right\}\)

\(\Rightarrow x\in\left\{-6;0;2;8\right\}\)

c.

\(\frac{x+2}{x-1}\in Z\)

\(\Rightarrow x+2⋮x-1\)

\(\Rightarrow x-1+3⋮x-1\)

\(\Rightarrow3⋮x-1\)

\(\Rightarrow x-1\inƯ\left(3\right)\)

\(\Rightarrow x-1\in\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)

6 tháng 7 2016

\(a,\frac{x+3}{5}\in\Leftrightarrow x+3\in B5\Leftrightarrow x\in B5-3\)

\(b,\frac{7}{x-1}\in Z\Leftrightarrow x-1\inƯ7\Leftrightarrow x-1\in\left\{\pm1;\pm7\right\}\Leftrightarrow x\in\left\{-6;0;2;8\right\}\)

\(c,\frac{x+2}{x-1}\in Z\Leftrightarrow\frac{x-1+3}{x-1}\in Z\Leftrightarrow1+\frac{3}{x-1}\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)

\(\Leftrightarrow x-1\inƯ3\Leftrightarrow x-1\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-2;0;2;4\right\}\)

10 tháng 6 2018

a) ta có: \(A=\frac{2x}{x-2}=\frac{2x-4+4}{x-2}=\frac{2.\left(x-2\right)+4}{x-2}=\frac{2.\left(x-2\right)}{x-2}+\frac{4}{x-2}=2+\frac{4}{x-2}\)

Để \(A\inℤ\)

\(\Rightarrow\frac{4}{x-2}\inℤ\)

\(\Rightarrow4⋮x-2\Rightarrow x-2\inƯ_{\left(4\right)}=\left(4;-4;2;-2;1;-1\right)\)

nếu x -2 = 4 => x = 6 (TM)

x- 2= - 4 => x= - 2 (TM)

x- 2= 2 => x = 4 (TM)

x- 2 = -2 => x = 0 (TM)

x - 2 = 1 => x = 3 (TM) 

x - 2 = -1 => x=  1 (TM)

KL: \(x\in\left(6;-2;4;0;3;1\right)\)

c) ta có: \(C=\frac{x^2+2}{x+1}=\frac{\left(x+1\right).\left(x-1\right)+3}{x+1}=\frac{\left(x+1\right).\left(x-1\right)}{x+1}+\frac{3}{x+1}\)\(=x-1+\frac{3}{x+1}\)

Để \(C\inℤ\)

\(\Rightarrow\frac{3}{x+1}\inℤ\)

\(\Rightarrow3⋮x+1\Rightarrow x+1\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)

nếu x + 1 = 3 => x = 2 (TM)

x + 1 = - 3 => x = -4 (TM)

x + 1 = 1 => x = 0 

x + 1 = -1 => x = -2 (TM)

KL: \(x\in\left(2;-4;0;-2\right)\)

p/s

7 tháng 11 2019

Bài 2:

b) Với y = 0 thì vt của pt thứ 2 = 0 => loại.

Xét y khác 0:

Nhân pt thứ nhất với \(\frac{7}{5}\) rồi trừ đi pt thứ 2 thu được:

\(\frac{14}{5}x^3+\frac{21}{5}x^2y-y^3-6xy^2=0\)

\(\Leftrightarrow\frac{1}{5}\left(x-y\right)\left(14x^2+35xy+5y^2\right)=0\)

Với x = y, thay vào pt thứ 2:

\(7x^3=7\Rightarrow x=1\Rightarrow y=1\)

Với \(14x^2+35xy+5y^2=0\)

\(\Leftrightarrow14\left(\frac{x}{y}\right)^2+35\left(\frac{x}{y}\right)+5=0\)

Đặt \(\frac{x}{y}=t\) suy ra: \(14t^2+35t+5=0\Rightarrow\left[{}\begin{matrix}t=\frac{-35+3\sqrt{105}}{28}\\t=\frac{-35-3\sqrt{105}}{28}\end{matrix}\right.\)

Nghiệm xấu quá, chị tự thay vào giải nốt :D. Nhớ check xem em có tính nhầm chỗ nào ko:D

7 tháng 11 2019

3/ Sửa phân thức thứ 3 thành: \(\frac{1}{1+c^3}\).

Quy đồng lên ta cần chứng minh: \(\frac{\Sigma_{cyc}\left(1+a^3\right)\left(1+b^3\right)}{\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\right)}\ge\frac{3}{1+abc}\)

\(\Leftrightarrow abc\left(a^3b^3+b^3c^3+c^3a^3\right)+2abc\left(a^3+b^3+c^3\right)-3a^3b^3c^3-\left[a^3+b^3+c^3-3abc+2\left(a^3b^3+b^3c^3+c^3a^3\right)\right]\ge0\)Đến đây chắc là đổi biến sang pqr rồi làm nốt ạ! Hơi trâu bò tí, cách khác em chưa nghĩ ra.

28 tháng 6 2017

Bài 1:
a)\(\frac{x}{5}=\frac{-3}{y}\Rightarrow xy=-15\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 15) (1; -15) (-3; 5) (3; -5)
b)\(\frac{-11}{x}=\frac{y}{3}\Rightarrow xy=-33\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 33) (1; -33) (3; -11) (-3; 11)

Bài 2: Ở đây mình vẫn chưa hiểu về cặp số nguyên
a) Để M là số nguyên thì x + 2 chia hết cho 3. Vậy ta có các số: x \(\in\){...; -5; -2; 1; 4; 7; 10; ...}
b) Để N là số nguyên thì 7 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{2;0;8;-6\right\}\)
Vậy \(x\in\left\{2;0;8;-6\right\}\)
c) Để D là số nguyên thì x + 1 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1). Đặt tính chia (bạn tự đặt do mình không cách đặt tính chia trên olm) ta có:
(x + 1) : (x - 1) = 1 (dư 2)
Để D là số nguyên thì 2 chia hết cho x - 1\(\Rightarrow x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{2;0;3;-1\right\}\)
Vậy \(x\in\left\{2;0;3;-1\right\}\)

23 tháng 6 2019

a, Với x = 1 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot1+2}{1-3}=\frac{5}{-2}=\frac{-5}{2}\)

Với x = 2 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot2+2}{2-3}=\frac{8}{-1}=-\frac{8}{1}=-8\)

Với x =\(\frac{5}{2}\)thì : \(A=\frac{3x+2}{x-3}=\frac{3\cdot\frac{5}{2}+2}{\frac{5}{2}-3}=\frac{\frac{15}{2}+2}{\frac{5}{2}-3}=\frac{\frac{19}{2}}{-\frac{1}{2}}=\frac{19}{2}\cdot(-2)=\frac{19}{1}\cdot(-1)=-19\)

b, Ta có : \(\frac{3x+2}{x-3}=\frac{3x-9+11}{x-3}=\frac{3(x-3)+11}{x-3}=3+\frac{11}{x-3}\)

\(\Leftrightarrow11⋮x-3\Leftrightarrow x-3\inƯ(11)=\left\{\pm1;\pm11\right\}\)

Lập bảng :

x - 31-111-11
x4214-8

c,Để suy nghĩ đã

23 tháng 6 2019

Làm tiếp :v

c, \(B=\frac{x^2+3x-7}{x+3}=\frac{x(x+3)-7}{x+3}=x-\frac{7}{x+3}\)

\(\Rightarrow7⋮x+3\Leftrightarrow x+3\inƯ(7)=\left\{\pm1;\pm7\right\}\)

Lập bảng :

x + 31-17-7
x-2-44-10

d, Tương tự

14 tháng 10 2018

a) Gọi biểu thức trên là A.

 \(ĐK:x\ge0\). Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\) (1)

Để \(x\in Z\) thì \(\frac{3}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\sqrt{x}=\left\{0;-2;2;-4\right\}\) nhưng do không có căn bậc 2 của số âm nên:

\(\sqrt{x}\in\left\{0;2\right\}\Leftrightarrow x\in\left\{0;4\right\}\). Thay vào (1) để thử lại ta thấy chỉ có x = 0 thỏa mãn.

Vậy có 1 nghiệm là x = 0

b) Gọi biểu thức trên là B. ĐK: \(x\ge0\)

\(B=\frac{2\left(\sqrt{2}-5\right)}{\sqrt{x}+1}=\frac{2\sqrt{2}-10}{\sqrt{x}+1}=\frac{2\sqrt{2}}{\sqrt{x}+1}-\frac{10}{\sqrt{x}+1}\)

Để \(x\in Z\) thì \(\frac{10}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Đến đây bạn tiếp tục lập bảng tìm \(\sqrt{x}\) rồi bình phương tất cả các giá trị của \(\sqrt{x}\) để tìm được các giá trị của x nhé!. Nhưng lưu ý rằng làm xong phải thử lại bằng cách thế vào B để tìm nghiệm chính xác nhất nhé!

c) Tương tự như trên,bạn tự làm

d) Tương tự như câu a),bạn tự làm. Mình lười òi =))