K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

a)\(M=\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\left(ĐKXĐ:x\ne-1;y\ne1\right)\)

    \(M=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)

     \(M=\frac{x^2+x^3-y^2+y^3-x^3y^2-x^2y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)

      \(M=\frac{\left(x-y\right)\left(x+y\right)-x^2y^2\left(x+y\right)+x^3+y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)

       \(M=\frac{\left(x-y\right)\left(x+y\right)-x^2y^2\left(x+y\right)+\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)

         \(M=\frac{\left(x+y\right)\left(x-y-x^2y^2+x^2-xy+y^2\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)

          \(M=\frac{x-y-x^2y^2+x^2-xy+y^2}{\left(1-y\right)\left(1+x\right)}\)

          \(M=\frac{x-xy+x^2-x^2y^2+y^2-y}{\left(1-y\right)\left(1+x\right)}\)

           \(M=\frac{x\left(1-y\right)+x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)}{\left(1-y\right)\left(1+x\right)}\)

            \(M=\frac{\left(1-y\right)\left(x+x^2\left(1+y\right)-y\right)}{\left(1-y\right)\left(1+x\right)}\)

            \(M=\frac{x\left(x+1\right)+y\left(x-1\right)\left(x+1\right)}{1+x}\)

             \(M=x+xy-y\)

b)Ta có:\(x+xy-y=-7\)

            \(x\left(y+1\right)-y-1+8=0\)

             \(\left(x-1\right)\left(y+1\right)=-8\)

Ta có : -8 = 8 . -1 = -8 . 1 = -2.4=-4.2

       Rồi chỗ đó tự thay nha

Đây là bài dài nhất trong olm của mk

    

23 tháng 8 2016

Đặt a = x + y, b = y + z, c = x + z

Từ đó ta có x = \(\frac{a\:+C-b}{2}\), y = \(\frac{a+b-c}{2}\), z = \(\frac{b+c-a}{2}\)

Thì bất đẳng thức thành

\(\frac{a+c-b}{2b}\)\(\frac{b+c-a}{2a}\)\(\frac{a+b-c}{2c}\)<= \(\frac{3}{2}\)

<=> (a/b + b/a) + (a/c + c/a) + (b/c + c/b) <= 6 (đúng)

Vậy bất đẳng thức ban đầu là đúng

23 tháng 8 2016

Mình ghi nhầm đấu nhé >= mà ghi nhầm thành <=

20 tháng 6 2020

Ta có: \(x+\frac{1}{y};y+\frac{1}{x}\) thuộc Z 

=> \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+x.\frac{1}{x}+\frac{1}{y}.y+\frac{1}{xy}=xy+\frac{1}{xy}=xy+\frac{1}{xy}\) thuộc Z 

=> \(\left(xy+\frac{1}{xy}\right)^2=x^2y^2+2xy\frac{1}{xy}+\frac{1}{x^2y^2}=x^2y^2+\frac{1}{x^2y^2}+2\) thuộc Z 

=> \(x^2y^2+\frac{1}{x^2y^2}\) thuộc Z