VD1: Chứng minh các phương trình sau không có nghiệm nguyên:
a) \(x^2-y^2=1998\)
b) \(x^2+y^2=1999\)
VD2: Tìm các nghiệm nguyên của phương trình:
\(9x+2=y^2+y\)
VD3: Chứng minh rằng các phương trình sau không có nghiệm nguyên:
a) \(x^2-y^2=2010\)
b) \(x^4+y^4+z^4=1000\)
a.
Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên \(x^2-y^2\) chia 4 dư 0;1;3 mà \(1998\) chia 4 dư 2 nên PT vô nghiệm.
b.
Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên \(x^2+y^2\) chia 4 dư 0;1;2 mà \(1999\) chia 4 dư 3 nên PT vô nghiệm
#)Giải :
VD1:
a) Ta thấy x2,y2 chia cho 4 chỉ dư 0,1
nên x2 - y2 chia cho 4 có số dư là 0,1,3. Còn vế phải chia cho 4 có số dư là 2
=> Phương trình không có nghiệm nguyên
b) Ta thấy x2 + y2 chia cho 4 có số dư là 0,1,2. Còn vế phải 1999 chia cho 4 dư 3
=> Phương trình không có nghiệm nguyên