Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x^2,y^2,z^2\)là các số chính phương nên chia 8 dư 0, 1, 4.
Suy ra \(x^2+y^2+z^2\)chia 8 được số dư là một trong các số : 0, 1,,3, 4, 6.
Mà 1999 chia 8 dư 7
Suy ra phương trình không có nghiệm nguyên
\(x^2-y^2=2010\)
Với \(x\inℤ\)thì x^2 ; y^2 chia 4 dư 0 hoặc 1
x^2 - y^2 chia 4 dư 0 hoặc 1 hoặc 3 ( 1 )
mà 2010 chia 4 dư 2 (2)
từ (1) ; (2) Vậy phương trình vô nghiệm
Ta có :
VT : x2; y2 chia cho 4 dư 0 ; 1 => x2 + y2 chia cho 4 dư 0 ; 1 ; 2 (1)
VP : 1999 chia cho 4 dư 3 (2)
Từ (1) và (2) => PT đã cho vô nghiệm
#)Giải :
VD1:
Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )
\(\Rightarrow-1\le x\le0\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)
Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy...........................
#)Giải :
VD2:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)
\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)
Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)
Do đó \(y^4=\left(x^2+y^2+1\right)^2\)
Thay vào phương trình, ta suy ra được \(x=z=0\)
\(\Rightarrow y=\pm1\)
Câu 1:
A: Hai phương trình này tương đương vì có chung tập nghiệm S={-3}
B: Hai phương trình này không tương đương vì hai phương trình này không có chung tập nghiệm
Câu 2:
\(\left(y-2\right)^2=y+4\)
\(\Leftrightarrow y^2-4y+4-y-4=0\)
\(\Leftrightarrow y\left(y-5\right)=0\)
=>y=0 hoặc y=5
\(pt\Leftrightarrow x^3+2000x-1=y^2\Leftrightarrow x^3-x+2001x-1=y^2\Leftrightarrow\left(x-1\right)x\left(x+1\right)+2001x-1=y^2\)
Vì \(\hept{\begin{cases}\left(x-1\right)x\left(x+1\right)⋮3\\2001x⋮3\end{cases}\Rightarrow}\)(x-1)x(x+1)+2001x-1 chia 3 dư 2 mà y2 chia 3 chỉ dư 0 hoặc 1 nên PT vô nghiệm
Vậy PT không có nghiệm nguyên
a.
Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên \(x^2-y^2\) chia 4 dư 0;1;3 mà \(1998\) chia 4 dư 2 nên PT vô nghiệm.
b.
Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên \(x^2+y^2\) chia 4 dư 0;1;2 mà \(1999\) chia 4 dư 3 nên PT vô nghiệm
#)Giải :
VD1:
a) Ta thấy x2,y2 chia cho 4 chỉ dư 0,1
nên x2 - y2 chia cho 4 có số dư là 0,1,3. Còn vế phải chia cho 4 có số dư là 2
=> Phương trình không có nghiệm nguyên
b) Ta thấy x2 + y2 chia cho 4 có số dư là 0,1,2. Còn vế phải 1999 chia cho 4 dư 3
=> Phương trình không có nghiệm nguyên