Cho tam giác ABC vuông tại A có AM là trung tuyến. Trên tia đối tia MA lấy D sao cho MA=MD
a, CM : Tam giac ABM = Tam giac DCM rồi => AB//CD
b, Gọi K là trung điểm AC . CM : Tam giác ABK = Tam giác CDK
c, Gọi N là giao điểm AM và BK ; I là giao điểm KD và BC . CM: Tam giác KNI cân
d, Gọi Q là trung điểm AB. CM : C ; N; Q thẳng hàng
e, CM : \(AN=\frac{1}{3}BC\)
a ) Do AM là trung tuyến => BM = CM
Xét \(\Delta ABM\)và \(\Delta DCM\)có :
BM = CM ( cm trên )
\(\widehat{BMA}=\widehat{DMC}\)( hai góc đối đỉnh)
MA = MD ( gt )
nên \(\Delta ABM=\Delta DCM\)( c.g.c )
=> \(\widehat{ABM}=\widehat{MCD}\)( hai góc tương ứng )
mà hai góc này lại ở vị trí so le trong => AB//CD