Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do G là trọng tâm tam giác ABC nên AG = 2GM. Lại có AG = GD nên GD = 2GM hay GM = DM.
Xét tam giác DMB và tam giác GMC có:
DM = GM
BM = CM
\(\widehat{DMB}=\widehat{GMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta DMB=\Delta GMC\left(c-g-c\right)\)
\(\Rightarrow BD=CG\)
b) Do \(\Delta DMB=\Delta GMC\Rightarrow\widehat{FBM}=\widehat{ECM}\)
Xét tam giác FBM và tam giác ECM có:
\(\widehat{FMB}=\widehat{EMC}=90^o\)
BM = CM
\(\widehat{FBM}=\widehat{ECM}\)
\(\Rightarrow\Delta FBM=\Delta ECM\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow BF=CE\left(đpcm\right)\)
a) Xét ΔABM và ΔDCM có
MB=MC(M là trung điểm của BC)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MA=MD(gt)
Do đó: ΔABM=ΔDCM(c-g-c)
b) Ta có: ΔABM=ΔDCM(cmt)
nên AB=CD(Hai cạnh tương ứng)
mà AB<AC(gt)
nên CD<AC
Xét ΔACD có
CD<AC(cmt)
mà góc đối diện với cạnh CD là \(\widehat{CAD}\)
và góc đối diện với cạnh AC là \(\widehat{ADC}\)
nên \(\widehat{CAD}< \widehat{ADC}\)(Định lí quan hệ giữa góc và cạnh đối diện trong tam giác)
\(\Leftrightarrow\widehat{CAM}< \widehat{MDC}\)
mà \(\widehat{BAM}=\widehat{MDC}\)(ΔABM=ΔDCM)
nên \(\widehat{BAM}>\widehat{CAM}\)(đpcm)
a) Vì ΔABC có: AB=AC(gt)
=> ΔABC cân tại A
=> góc ABC= góc ACB
Xét ΔAMB và ΔAMC có:
AB=AC(gt)
góc ABM= góc ACM (cmt)
MB=MC(gt)
=> ΔAMB=ΔAMC (c.g.c)
=> góc AMB= góc AMC
b) Có góc AMB + góc AMC =180 ( cặp góc kề bù)
Mà góc AMB = góc AMC
=> góc AMB= góc AMC =90
=> AM vuông góc BC
c) Vì ΔAMB=ΔAMC(cmt)
=>góc MAB= góc MAC
Xét ΔAHM và ΔAKM có:
AH=AK(gt)
góc MAH = góc MAK (cmt)
AM: cạnh chung
=> ΔAHM =ΔAKM (c.g.c)
=> góc AMH = góc AMK
=> MA là tia pg của góc HMK
d) Vì: AB=AH+HB
AC=AK+KC
Mà: AB=AC(gt) ; AH=AK(gt)
=> HB=KC
Xét ΔBHM và ΔCKM có:
BH=CK(cmt)
góc HBM= góc KCM (cmt)
MB=MC(gt)
=> ΔBHM = ΔCKM (c.g.c)
a: Xét ΔAMB và ΔAMD có
AM chung
MB=MD
AB=AD
Do đó: ΔAMB=ΔAMD
b: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
c: Xét ΔKBE và ΔKDC có
KB=KD
\(\widehat{KBE}=\widehat{KDC}\)
BE=DC
Do đó: ΔKBE=ΔKDC
Suy ra: \(\widehat{BKE}=\widehat{DKC}\)
=>\(\widehat{BKE}+\widehat{BKD}=180^0\)
hay E,K,D thẳng hàng