K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

Ta có:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=1+\frac{b+c}{a}+1+\frac{c+a}{b}+1+\frac{a+b}{c}\)

=2017.2018=4070306

=> A= \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)=4070306-3=4070303

3 tháng 1 2019

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{\left(ab+bc+ac\right).\left(a+b+c\right)-abc}{abc.\left(a+b+c\right)}=0\Leftrightarrow\left(ab+bc+ac\right).\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right).\left(a+c\right).\left(c+b\right)=0\Leftrightarrow\orbr{\begin{cases}a=-b\\a=-c\end{cases}\text{hoac }c=-b}\)

thay vào rồi tính (nhớ đưa dấu âm lên tử nha) còn phần phan tích sẽ giải thích sau-bây h bận >:

3 tháng 1 2019

\(\left(a+b+c\right).\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow a^2c+a^2b+abc+b^2a+b^2c+abc+c^2a+c^2b=0\)

\(\Leftrightarrow\left(abc+a^2c\right)+\left(abc+b^2c\right)+\left(a^2b+ab^2\right)+\left(c^2a+c^2b\right)=0\)

\(\Leftrightarrow ac.\left(a+b\right)+cb.\left(a+b\right)+ab.\left(a+b\right)+c^2.\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right).\left(ac+cb+ab+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right).\left[c\left(a+c\right)+b.\left(a+c\right)\right]=\left(a+b\right).\left(a+c\right).\left(c+b\right)=0\)

~~ cách này dài dòng >: but t ko nghĩ đc cách nào ngắn hưn =(

16 tháng 12 2016

ta có 

\(\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)

\(3+\frac{bc\left(b+c\right)+ac\left(b+c\right)+ab\left(a+b\right)}{abc}=0\) 

\(\frac{b^2c+bc^2}{abc}>0\)

tương tự các phân thức còn lại  suy ra a=b=c

5 tháng 4 2019

Bài 2 : 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)

Mà \(2018=a+b+c\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)

\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\left(b+c\right)=0\)

TH1 : \(a+b=0\Leftrightarrow a=-b\)

\(M=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{c^{2014}}\)

Mà \(a+b+c=2018\)

\(\Leftrightarrow-b+b+c=2018\)

\(\Leftrightarrow c=2018\)

Khi đó \(M=\frac{1}{2018^{2017}}\)

Các trường hợp còn lại tương tự

Kết quả cuối cùng : \(M=\frac{1}{2018^{2017}}\)

6 tháng 4 2019

Câu hỏi của nguyễn thị phượng - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo bài 2 ở link này nhé!

16 tháng 1 2018

=> (a+b+c).(1/a+b + 1/b+c  +1/c+a) = 2017/90

=> a+b+c/a+b + a+b+c/b+c + a+b+c/c+a = 2017/90

=> 1 + c/a+b + 1 + a/b+c + 1 + b/c+a = 2017/90

=> a/b+c + b/c+a  +c/a+b = 2017/90 - 3 = 1747/90

Vậy S = 1747/90

Tk mk nha