Cho A=1/10+1/15+1/21+...+1/120
hãy chứng minh rằng A<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}+\dfrac{1}{120}\)
\(M=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)
\(M=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{15.16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(M=2.\dfrac{3}{16}\)
\(M=\dfrac{3}{8}\)
Vậy \(\dfrac{1}{3}< M< \dfrac{1}{2}\)
Để chứng minh A<1/10 thì ta chứng minh A<2/3.4/5.6/7....100/101
Để chứng minh A>1/15 thì ta chứng minh A>1/2.2/3.4/5.98/99
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)
Ta có :
\(\frac{1}{10}< 1\)
\(\frac{1}{15}< 1\)
\(\frac{1}{21}< 1\)
........................
\(\frac{1}{120}< 1\)
\(\Rightarrow\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}< 1\)
\(\Rightarrow A< 1\)( đpcm)
Ta có : A = \(\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
= \(\frac{1}{20}\times2+\frac{1}{30}\times2+...+\frac{1}{240}\times2\)
= \(2\times\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
= \(2\times\left(\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{15\times16}\right)\)
= \(2\times\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
= \(2\times\left(\frac{1}{4}-\frac{1}{16}\right)\)
= \(2\times\frac{3}{16}\)
= \(\frac{3}{8}\)< 1
=> A < 1