Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1/A=25/1.6+25/6.11+25/11.16+....+25/41.46
=5.(5/1.6+5/6.11+5/11.16+...+5/41.46)
=5.(1/1-1/6+1/6-1/11+1/11-1/16+....+1/41-1/46)
=5.(1/1-1/46)
=5.45/46
=225/46
1+2+3+...+n = \(\frac{n\left(n+1\right)}{2}\)
A=\(\frac{n\left(n+1\right)}{2}\)-7
Để a chia hết cho 10 thì \(\frac{n\left(n+1\right)}{2}\) có tận cùng 7 tức là n(n+1) có tận cùng 4
vô lí vì tích 2 số liên tiếp chi có tận cùng là 0, 2, 6 nên A không chia hết cho 10
Lời giải:
$\frac{A}{2}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}+\frac{9-8}{8\times 9}+\frac{10-9}{9\times 10}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}$
$=1-\frac{1}{9}=\frac{8}{9}$
$\Rightarrow A=2\times \frac{8}{9}=\frac{16}{9}$
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)
Ta có :
\(\frac{1}{10}< 1\)
\(\frac{1}{15}< 1\)
\(\frac{1}{21}< 1\)
........................
\(\frac{1}{120}< 1\)
\(\Rightarrow\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}< 1\)
\(\Rightarrow A< 1\)( đpcm)
Ta có : A = \(\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
= \(\frac{1}{20}\times2+\frac{1}{30}\times2+...+\frac{1}{240}\times2\)
= \(2\times\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
= \(2\times\left(\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{15\times16}\right)\)
= \(2\times\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
= \(2\times\left(\frac{1}{4}-\frac{1}{16}\right)\)
= \(2\times\frac{3}{16}\)
= \(\frac{3}{8}\)< 1
=> A < 1