K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

\(\hept{\begin{cases}a^3+b^3=9\left(1\right)\\a^2+2b^2=a+4b\left(2\right)\end{cases}}\)

Lấy \(\left(1\right)-3\left(2\right)\)

Ta có \(\left(a^3-3a^2+3a-1\right)+\left(b^3-6b^2+12b-8\right)=0\)

<=> \(\left(a-1\right)^3=-\left(b-2\right)^3\)

<=> \(a+b=3\)

Thay vào (1) ta được

\(\left(3-a\right)^3+a^3=9\)

=> \(\orbr{\begin{cases}a=2\Rightarrow b=1\\a=1\Rightarrow a=2\end{cases}}\)

Vậy \(\left(a,b\right)=\left(2,1\right);\left(1,2\right)\)

17 tháng 3 2020

ta có : \(a^3+2b^2-4b+3=0\)

\(\Leftrightarrow a^3=-2\left(b-1\right)^2-1\le-1\Rightarrow a^3\le-1\Rightarrow a^2\ge1\) 

\(\Rightarrow\hept{\begin{cases}a^2\ge1\\a^2b^2\ge b^2\end{cases}}\)\(\Rightarrow a^2+a^2b^2-2b\ge1+b^2-2b\Rightarrow\left(b-1\right)^2\le0\)

mà \(\left(b-1\right)^2\)luôn \(\ge0\forall b\in Q\)

dấu ''='' xảy ra <=> \(b-1=0\Rightarrow b=1\)

sau đó em chỉ cần thay b=1 vào pt ban đầu :

rồi => a = ... sau đó lấy a2+b2=...

27 tháng 11 2018

\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)

\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)

\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)

\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)

\(=\frac{3a^2-b^2}{b^2}\)

\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
7 tháng 10 2021

Bạn cần viết đề bài bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

16 tháng 5 2017

khó úa z mik ko giai duoc k cho mik ik mik kb cho

17 tháng 7 2017

câu b có phải 2011 hông zậy mà sao lạ dữ