Chứng tỏ rằng: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn vào các câu hỏi tương tự là sẽ thấy mấy câu y chang câu của bn thôi
Ta có :
\(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};\frac{1}{43}>\frac{1}{60};....;\frac{1}{60}=\frac{1}{60}\)
\(\Rightarrow\frac{1}{41}+\frac{1}{42}+....+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=20.\frac{1}{60}=\frac{1}{3}\)(1)
\(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};\frac{1}{63}>\frac{1}{80};....;\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+....+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+....+\frac{1}{80}=20.\frac{1}{80}=\frac{1}{4}\)(2)
Từ (1) và (2) \(\Rightarrow y=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+....+\frac{1}{80}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)(đpvm)
Gọi \(B=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{60}\)
\(C=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{80}\)
Ta có : \(B=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{60}>\frac{1}{60}.20=\frac{2}{3}\)
\(C=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{80}>\frac{1}{80}.20=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{2}{3}+\frac{1}{4}=\frac{11}{12}\)
Mà \(\frac{11}{12}>\frac{7}{12}\Rightarrow\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
nhớ đúng cái
Thấy 1/41+1/42 +......+ 1/60 < 1/40 .20
1/41 +1/42 + .....+1/60<1/2
mà 1/61 +1/62+......+1/80 < 1/60 .20 =1/3
suy ra 1/41+1/42+ .......+1/80 <1/2 +1/3=7/12(đpcm)
Lại có 1/41 +1/42 +.....+1/80 <1/40 .40 =1(đpcm)
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}\)
\(=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)>\frac{1}{60}.20+\frac{1}{80}.20\)
\(>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{60}>\frac{1}{60}.\left(60-41+1\right)=\frac{1}{60}.20=\frac{1}{3}\)(1)
\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{80}>\frac{1}{80}.\left(80-61+1\right)=\frac{1}{80}.20=\frac{1}{4}\)(2)
Từ (1)(2)=>\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\left(đpcm\right)\)
ta lấy ví đụ 1/2
vì 1/2 đã nhỏ hơn 1 mà các số kia đều nhỏ hơn 1/2
k nhé
đoạn cuối cùng là lớn hơn 1 chứ ko phải 11 nhe mình đánh nhầm . xin lỗi
\(999993^{1999}-555557^{1997}=\left(999993^4\right)^{499}.999993^3-\left(555557^4\right)^{499}.555557\)
\(=\left(....1\right)^{499}.999993-\left(.....1\right)^{499}.555557=\left(....3\right)-\left(.....7\right)=\left(.....6\right)\)
\(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+....+\frac{1}{80}\right)\)
\(< \left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\left(20\text{ số hạng}\right)\right)+\left(\frac{1}{60}+\frac{1}{60}+....+\frac{1}{60}\left(20\text{ số hạng}\right)\right)=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Nhận xét : Từ \(\frac{1}{41}\rightarrow\frac{1}{80}\)có 40 phân số . Gọi tổng các phân số đó là A.Ta có thể nhóm các phân số thành hai nhóm rồi so sánh các phân số có tử giống nhau.
Ta có : \(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}\)
\(=\left[\frac{1}{41}+\frac{1}{42}+...+\frac{1}{59}+\frac{1}{60}\right]+\left[\frac{1}{61}+\frac{1}{62}+...+\frac{1}{79}+\frac{1}{80}\right]\)
Vì \(\frac{1}{41}>\frac{1}{42}>...>\frac{1}{60}>\frac{1}{61}>...>\frac{1}{80}\) nên \(A>\left[\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}+\frac{1}{60}\right]+\left[\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}+\frac{1}{80}\right]\)
\(A>\frac{20}{80}+\frac{20}{80}=\frac{1}{3}+\frac{1}{4}=\frac{4+3}{12}=\frac{7}{12}\)
Vậy : \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
Ta có: 7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
=> ĐPCM ( ĐPCM có nghĩa là điều phải chứng minh)
~ Học tốt ~ K cho mk nhé! Thank you.