Vẽ góc eAc và eAc là 2 góc kề bù thỏa mãn góc bAc = 60 độ.
a) Tính góc cAe
b) Vẽ tia Ad là tia phân giác của góc cAe. Chứng tỏ Ac là tia phân giác của góc bAd
c) Gọi Ag là tia đối của tia Ac, Ah là tia phân giác của góc bAg. Chứng tỏ hai tia Ad và Ah là hai tia đối nhau.
a, Có ^cAe + ^cAd = 180o (kề bù) => ^cAe = 120o
b,Vì Ad là p/g ^cAe => ^A1 = ^A2 = \(\frac{\widehat{cAe}}{2}=\frac{120^o}{2}=60^o\)
Ta có : \(\widehat{A_1}+\widehat{bAd}=180^o\)(Kề bù)
\(\Rightarrow\widehat{bAd}=120^o\)
\(\Rightarrow\widehat{bAd}>\widehat{bAc}\left(120^o>60^o\right)\)
Mà ^bAd = 2.^bAc
=> Ac là p/g ^bAd
c,Có ^cAe + ^A4 = 180o (kề bù)
=> ^A4 = 60o
Có ^bAg + ^A4 = 180 (kề bù)
=>^bAg = 120o
Vì AH là p/g ^bAg => ^A5 = ^bAg : 2 = 60o
Ta có \(\widehat{A_1}+\widehat{A_4}+\widehat{A_5}=60^o+60^o+60^o=180^o\)
=> ^dAh = 180o
=> 2 tia Ad và Ah đối nhau