\(\text{Cho }P=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot\cdot\cdot\frac{399}{400}\text{ Chứng minh }P< \frac{1}{20}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{399}{400}\)
\(\Rightarrow P< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{400}{401}\)
\(\Rightarrow P^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{399}{400}.\frac{400}{401}\)
\(\Rightarrow P^2< \frac{1}{401}< \frac{1}{400}=\frac{1}{20^2}\)
\(\Rightarrow P< \frac{1}{20}\)
P=1/2.3/4.5/6.....399/400
=>P<2/3.4/5......400/401
=>P2<1/2.2/3.3/4......398/399.399/400.400/401
=1/401<1/400=(1/20)2
=>P<1/20
\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}+\frac{1}{6}\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{1}{8}+\frac{1}{8}\cdot\frac{1}{9}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)
\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+...+\frac{1}{8}\cdot\frac{1}{9}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}\)
* LÀM NỐT *
#Louis
Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}....\frac{100}{101}\)
Nhận xét: Nếu \(\frac{a}{b}
\(P=\frac{1}{2}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}......\frac{399}{400}\)
\(P=\frac{1.3.4.5....399}{2.4.5.6.....400}\)
\(P=\frac{1.3}{2.400}\)
\(P=\frac{3}{800}\)
Vì \(\frac{3}{800}< \frac{40}{800}\)
\(\Rightarrow P< \frac{40}{800}\)
\(\Rightarrow P< \frac{1}{20}\left(đpcm\right)\)
Ta co:
\(P=\frac{1}{2}.\frac{3.4.5...399}{4.5.6...400}\)
\(\Leftrightarrow P=\frac{1}{2}.\frac{3}{400}=\frac{3}{800}< \frac{3}{600}=\frac{1}{20}\)
\(\Rightarrow P< \frac{1}{20}\left(dpcm\right).\)