K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(CB=\sqrt{9^2+12^2}=15\left(cm\right)\)

ADlà phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=15/7

=>BD=45/7cm; CD=60/7cm

b: Xét ΔABH vuông tại H và ΔCDE vuông tại E có

góc HAB=góc ECD

=>ΔABH đồng dạng với ΔCDE

a: Xét ΔAHB vuông tại H và ΔCHA vuôg tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

MH/MC=AH/AC=HB/AB

b: Xét ΔABE và ΔCMA có

góc BAE=góc MCA

góc ABE=góc CMA

=>ΔABE đồng dạng vơi ΔCMA

=>góc AEB=góc CAM

=>góc BEA=góc EAM

=>AM//BE

26 tháng 3 2023

Vì sao góc ABE=góc CMA thì bạn lại ko nói. Giải kiểu thầy cô tự hiểu. 

a) Xét ΔBMN và ΔCMA có 

\(\widehat{MBN}=\widehat{MCA}\)(hai góc so le trong, AC//NB)

\(\widehat{BMN}=\widehat{CMA}\)(hai góc đối đỉnh)

Do đó: ΔBMN∼ΔCMA(g-g)

b) Ta có: ΔBMN∼ΔCMA(cmt)

nên \(\dfrac{MN}{MA}=\dfrac{MB}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)(1)

Xét ΔABC có AM là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BM}{CM}\)(Tính chất đường phân giác của tam giác)(2)

Từ (1) và (2) suy ra \(\dfrac{AB}{AC}=\dfrac{MN}{MA}\)(đpcm)

26 tháng 5 2021

Dài lắm bạn tham khảo.undefinedundefined

12 tháng 6 2020

nhầm đầu bài chút rồi phải là tia phân giác của góc HAC cắt BC tại M

a) xét tam giác MHA và tam giác MNA có

MHA=MNA(=90 độ)

MA chung

HAM=NAM( AM là phân giác của HAC)\=> tam giác MHA= tam giác MNA(ch-gnh)

=> AH=AN(hai cạnh tương ứng)

b) vì tam giác ABH vuông tại H=> ABH+HAB= 90 độ=> HAB=30 độ (ABH= 60 độ)

vì AM là phân giác của HAC=> HAM=MAC=BAC-BAH/2=90-30/2=30 độ

xét tam giác ABH và tam gáic MAH có

AH chung

AHB=AHM(=90 độ)

BAH=MAH(=30 độ)

=> tam giác ABH= tam gáic MAH(gcg)

=> AM=AB( hai cạnh tương ứng)

c) vì AM=AB=> tam giác ABM cân A mà ABM= 60 độ=> tam giác ABM đều => AM=MB=AB

d) vì tam giác ABC vuông tại A=> B+C=90 độ=> C=30 độ

=> C=MAN=30 độ

=> tam giác AMC cân M=> AM=MC=MB mà MB+MC=BC=> AM=1/2BC

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

AB=AC

\(\widehat{BAM}\) chung

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

21 tháng 1 2022

a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:

BC chung.

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).

=> BN = CM (2 cạnh tương ứng).

Ta có: AB = AN + BN; AC = AM + CM.

Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).

=> AM = AN.

b) Xét tam giác AMN: AM = AN (cmt).

=> Tam giác AMN cân tại A.

c) Xét tam giác ABC: 

BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).

I là giao điểm của BM và CN (gt).

=> I là trực tâm.

=> AI là đường cao.

Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.

=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).