K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔCHA vuôg tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

MH/MC=AH/AC=HB/AB

b: Xét ΔABE và ΔCMA có

góc BAE=góc MCA

góc ABE=góc CMA

=>ΔABE đồng dạng vơi ΔCMA

=>góc AEB=góc CAM

=>góc BEA=góc EAM

=>AM//BE

26 tháng 3 2023

Vì sao góc ABE=góc CMA thì bạn lại ko nói. Giải kiểu thầy cô tự hiểu. 

a: \(CB=\sqrt{9^2+12^2}=15\left(cm\right)\)

ADlà phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=15/7

=>BD=45/7cm; CD=60/7cm

b: Xét ΔABH vuông tại H và ΔCDE vuông tại E có

góc HAB=góc ECD

=>ΔABH đồng dạng với ΔCDE

a) Xét ΔBMN và ΔCMA có 

\(\widehat{MBN}=\widehat{MCA}\)(hai góc so le trong, AC//NB)

\(\widehat{BMN}=\widehat{CMA}\)(hai góc đối đỉnh)

Do đó: ΔBMN∼ΔCMA(g-g)

b) Ta có: ΔBMN∼ΔCMA(cmt)

nên \(\dfrac{MN}{MA}=\dfrac{MB}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)(1)

Xét ΔABC có AM là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BM}{CM}\)(Tính chất đường phân giác của tam giác)(2)

Từ (1) và (2) suy ra \(\dfrac{AB}{AC}=\dfrac{MN}{MA}\)(đpcm)

30 tháng 3 2023

xét ΔABC và ΔDBN ta có

\(\widehat{B}\)  chung

\(\widehat{BAC}=\widehat{BDN}=90^o\)

=>ΔABC∼ΔDBN(g.g)

=>\(\dfrac{BA}{BD}=\dfrac{BC}{BN}\)

=>\(BA.BN=BD.BC\)