K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

a\(\equiv\)b(mod m)<=>a=uk+m và b=vk+m

<=>ac=uk.c+m.c và bc=vk.c+m.c

<=>ac-bc=uk.c+m.c-vk.c-m.c=uk.c-vk.c

<=>ac\(\equiv\)bc(mod cm)

23 tháng 5 2019

ap−1≡1(modp)<=>ap−1−1⋮p<=>ap−a⋮p  (1)

*Nếu a là số nguyên dương Ta giả sử  (1) đúng với a=n. Ta có np−n⋮p

Ta sẽ chứng minh (1) đúng với a=n+1. Thật vậy:

(n+1)p−(n+1)=np+np−1+n(n−1)2!np−2+...+n(n−1)2!n2+n+1

Đặt Ckp=p(p−1)...(p−k+1)k!

vì p là số nguyên tố nên (p−1)...(p−k+1)k!  là số nguyên và np−k cũng là số nguyên nên:

p(np−1+p−12!.np−2+...+n) là số nguyên chia hết cho p.

Vậy ta có(n+1)p−n−1=np+pm+1−n−1(với m thuộc Z nào đó)

=np−n+pm (dễ dàng thấy nó chia hết cho p)

*Nếu a là số nguyên âm.

+ p=2 => đúng

+p lẻ thì đặt ap−a=−bp+b=−(bp−b)⋮p (với b là số nguyên dương, a=−b)

Vậy ap−a⋮p với mọi a∈Z

Bài viết đã được chỉnh sửa nội dung bởi Namthemaster1234: 08-07-2014 - 08:48

14 tháng 10 2018

Ta có:

 a1+a2+a3+...+an \(\equiv\) 0(mol 30)

=>  a1+a2+a3+...+an chia hết cho 30

Ta lại có: 

a1 \(⋮\)30 => a1.a1.a1​.a1.a1 \(⋮\)30

a2 \(⋮\)30=> a2.a2.a2​.a2.a2 \(⋮\)30

a3 \(⋮\)30=> a3.a3.a3​.a3.a3 \(⋮\)30

.....

an \(⋮\)30=> an.an.an​.an.an \(⋮\)30

Cộng vế với vế ta có:

ĐPCM

22 tháng 10 2018

nhanh lên các bạn

22 tháng 10 2018

Bạn ơi. cái này mà là lớp 6 á???

4 tháng 3 2020

mod là viết tắt của dạng toán modulo của điện toán

Trong điện toán, phép toán modulo là phép toán tìm số dư của phép chia 2 số (đôi khi được gọi là modulus).

Cho hai số dương, (số bị chia) a và (số chia) n, a modulo n (viết tắt là a mod n) là số dư của phép chia có dư Euclid của a cho n. Ví dụ, biểu thức "5 mod 2" bằng 1 vì 5 chia cho 2 có thương số là 2 là số dư là 1, trong khi "9 mod 3" bằng 0 do 9 chia 3 có thương số là 3 và số dư 0; không còn gì trong phép trừ của 9 cho 3 nhân 3. (Lưu ý rằng thực hiện phép chia bằng máy tính cầm tay sẽ không hiển thị kết quả giống như phép toán này; thương số sẽ được biểu diễn dưới dạng phần thập phân.)

Mặc dù thường được thực hiện khi a và n đều là số nguyên, nhiều hệ tính toán cho phép sử dụng các kiểu khác của toán học bằng số. Giới hạn của một modulo nguyên của n là tù 0 đến n − 1. (a mod 1 luôn bằng 0; a mod 0 là không xác định, có thể trả về lỗi chia cho số 0 trong nhiều ngôn ngữ lập trình.) Xem số học mô-đun để tìm các quy ước cũ hơn và liên quan được áp dụng trong lý thuyết số.

Khi hoặc a hoặc n là số âm, định nghĩa cơ bản bị phá vỡ và các ngôn ngữ lập trình khác nhau trong việc định nghĩa các kết quả này.

4 tháng 3 2020

còn cái dấu kia thì mình chịu