Bài 5*. Cho n ∈ N. Tìm ƯCLN của :
a) 14 n + 3 và 7n + 2;
b) 6n + 1 và 30 n + 3;
c) 24 n + 7 và 18 n + 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left\{{}\begin{matrix}14n+3⋮d\\7n+2⋮d\end{matrix}\right.\)
\(\Leftrightarrow-1⋮d\)
hay d=1
b: \(\left\{{}\begin{matrix}6n+1⋮a\\30n+3⋮a\end{matrix}\right.\Leftrightarrow a=2\)
a: \(\left\{{}\begin{matrix}14n+3⋮b\\7n+2⋮b\end{matrix}\right.\Leftrightarrow b=1\)
Gọi d là ước chung của 7n+3 và 8n+1
=> 7n+3 chia hết cho d => 8(7n+3)=56n+24 chia hết cho d
=> 8n+1 chia hết cho d => 7(8n+1)=56n+7 chia hết cho d
=> 8(7n+3)-7(8n+1)=11 chia hết cho d => d={1; 11} => hai số trên không thể NT cùng nhau
Gọi d là ước chung của 7n+3 và 8n+1 => 7n+3 chia hết cho d => 8(7n+3)=56n+24 chia hết cho d => 8n+1 chia hết cho d => 7(8n+1)=56n+7 chia hết cho d => 8(7n+3)-7(8n+1)=11 chia hết cho d => d={1; 11} => hai số trên không thể NT cùng nhau
Gọi d là \(ƯC\left(7n+3;8n-1\right)\). Suy ra:
\(7n+3⋮d;8n-1\)
\(\Rightarrow56n+24⋮d;56n-7⋮d\)
\(\Rightarrow31⋮d\)
\(\Rightarrow d\in\left\{1;31\right\}\)
Nếu \(7n+3⋮31\)
\(\Rightarrow7n+3-31⋮31\)
\(\Rightarrow7n-28⋮31\)
\(\Rightarrow7.\left(n-4\right)=31\)vì: \(\left(7,31\right)=1\)
\(\Rightarrow n-4⋮31\)
\(\Rightarrow n-4=31k\)(với k thuộc N)
\(\Rightarrow n=31k+4\)
Thay vào: \(8n-1=8.\left(31k+4\right)-1=8.31k+31=31.\left(8k+1\right).31\)
\(\RightarrowƯCLN\left(7n+3;8n-1\right)=31\)nếu \(n=31k+4\)(Với k thuộc N)
Với: \(n\ne31k+4\)thì \(ƯCLN\left(7n+3;8n-1\right)=1\)(Với k thuộc N)
Để hai số 7n + 3 và 8n - 1 là hai số nguyên tố cùng nhau <=> UCLN(7n + 3; 8n - 1) = 1
\(\Leftrightarrow n\ne31k+4\)(Với k thuộc N)
1) (2n-1;9n+4)=(2n-1;n+8)=(17;n+8)=1 hoặc 17
2) (7n+3;8n-1) =(7n+3;n-4)=(31;n-4)=1 hoặc 31
Bài 1:
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+22+23+...+2100 chia hết cho 2
A=2+22+23+24+...+299+2100
A=2(1+2)+23(1+2)+...+299(1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=2(1+2+22+23)+24(1+2+22+23)+...+297(1+2+22+23)=>A chia hết cho 1+2+22+23 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số
c)A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=(2+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
A=(24n1-3+24n1-3+24n1-1+24n1)+(24n2-3+24n2-3+24n2-1+24n2)+...+(24n25-3+24n25-3+24n25-1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0
A=0
Bài 3:
a)gọi UCLN của 2n+1 và 3n+1 là d
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d =>6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
1 chia hết cho d
=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d
b)Gọi UCLN cua 9n+13và 3n+4 là m
9n+13 chia hết cho m
3n+4 chia hết cho m=>9n+12 chia hết cho m
=>9n+13-(9n+12) chia hết cho m
1 chia hết cho m
=> m=1
=> UCLN cua 9n+13 va 3n+4 là1
c) gọi UCLN cua 2n+1 và 2n+3 là n
2n+3 chia hết cho n
2n+1 chia hết cho n
2n+3-(2n+1) chia hết cho n
2chia hết cho n
n thuộc {1,2}
=> UCLN của 2n+1 và 2n+3 là 1 hoặc 2
dài thấy mợ luôn để t lm đc bài nào thì t lm
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n^2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+2^2+2^3+...+2^100 chia hết cho 2
A=2+2^2+2^3+2^4+...+2^99+2^100
A=2(1+2)+2^3 (1+2)+...+2^99 (1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100
A=2(1+2+2^2+2^3 )+2^4 (1+2+2^2+2^3 )+...+2^97 (1+2+2^2+2^3 )=>A chia hết cho 1+2+2^2+2^3 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số.
c)A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^97+2^98+2^99+2^100 )
A=(24n1 -3+24n1 -3+24n1 -1+24n1)+(24n2 -3+24n2 -3+24n2 -1+24n2)+...+(24n25 -3+24n25 -3+24n25 -1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0.
A=....0
a: UCLN(14n+3;7n+2)=1
b: UCLN(6n+1;30n+3)=2