K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2021

Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ 

Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)

x  -2  -1  1  2  
\(x^2-1\) 00 

\(\left(-2;-1\right):+\)

\(\left(-1;1\right):-\)

\(\left(1;2\right):+\)

\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)

\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)

\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)

Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính 

17 tháng 1 2021

2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)

\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)

\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2018

Lời giải:

Ta có:

\(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin x}{(\sin x+\cos x)^3}dx+\int ^{\frac{\pi}{4}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx\)

\(=A+B\)

Xét riêng rẽ:

\(A=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin^3 x}{(\sin x+\cos x)^3}.\frac{dx}{\sin ^2x}=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{\left(\frac{\sin x+\cos x}{\sin x}\right)^3}d(-\cot x)\)

\(=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{(\cot x+1)^3}d(-\cot x)=-\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{d(\cot x+1)}{(\cot x+1)^3}\)

\(=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{4}\end{matrix}\right|\frac{1}{2(\cot x+1)^2}=\frac{3}{8}\)

\(B=\int ^{\frac{\pi}{4}}_{0}\frac{\sin x+\cos x-\cos x}{(\sin x+\cos x)^3}dx\)\(=\int ^{\frac{\pi}{4}}_{0}\frac{ 1}{(\sin x+\cos x)^2}dx-\int ^{\frac{\pi}{4}}_{0}\frac{\cos x}{(\sin x+\cos x)^3}dx\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos x}\right)^2}.\frac{dx}{\cos ^2x}-\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos^3 x}\right)^3}.\frac{dx}{\cos ^2x}\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^3}\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^3}\)

\(=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{-1}{\tan x+1}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{1}{2(\tan x+1)^2}=\frac{1}{8}\)

Do đó: \(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}\)

Sở dĩ phải chia tích phân thành tổng nhỏ như vậy là do khi ta thực hiện chia sin x xuống dưới mẫu thì hàm số không liên tục trong đoạn \([\frac{\pi}{2}; 0]\)

2 tháng 4 2018

Dạ em cảm ơn ạ!

NV
6 tháng 10 2021

\(\int\limits^{\dfrac{\pi}{4}}_{\dfrac{\pi}{8}}\dfrac{dx}{sin^2x.cos^2x}=\int\limits^{\dfrac{\pi}{4}}_{\dfrac{\pi}{8}}\dfrac{2d\left(2x\right)}{sin^22x}=-2cot2x|^{\dfrac{\pi}{4}}_{\dfrac{\pi}{8}}=...\) 

\(\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\dfrac{cos2xdx}{sin^2x.cos^2x}=\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\dfrac{cos^2x-sin^2x}{sin^2x.cos^2x}dx=\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\left(\dfrac{1}{sin^2x}-\dfrac{1}{cos^2x}\right)dx=\left(-cotx-tanx\right)|^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\)

\(\int\limits^{\dfrac{\pi}{3}}_0\dfrac{cos3x}{cosx}dx=\int\limits^{\dfrac{\pi}{3}}_0\dfrac{4cos^3x-3cosx}{cosx}dx=\int\limits^{\dfrac{\pi}{3}}_0\left(4cos^2x-3\right)dx\)

\(=\int\limits^{\dfrac{\pi}{3}}_0\left(2cos2x-1\right)dx=\left(sin2x-x\right)|^{\dfrac{\pi}{3}}_0=...\)

31 tháng 1 2023

 \(A=\int \frac{x}{\sqrt{x+2}}dx \\ = \int \frac{x+2-2}{\sqrt{x+2}}dx \\ = \int \sqrt{x+2}-2\frac{1}{\sqrt{x+2}}dx \\ = \frac{2}{3}(x+2)^{\frac{3}{2}}-4\sqrt{x+2}+C\)

\(B=\int \frac{sinx+cosx}{\sqrt[3]{1-sin2x}}dx \\ x=\frac{\pi}{4}-u, dx=-du \\ =- \int \frac{sin(\frac{\pi}{4}-u)+cos(\frac{\pi}{4}-u)}{\sqrt[3]{1-sin(\frac{\pi}{2}-2u)}}du \\ = - \int \frac{\frac{1}{\sqrt2}cosu+\frac{1}{\sqrt2}sinu+\frac{1}{\sqrt2}cosu-\frac{1}{\sqrt2}sinu}{\sqrt[3]{1-cos2u}}du \\ = -\int \frac{\frac{2}{\sqrt2}cosu}{\sqrt[3]{1-cos2u}}du \\ = -\sqrt2 \int \frac{cosu}{\sqrt[3]{1-cos^2u+sin^2u}}du \\ = -\sqrt2 \int \frac{cosu}{\sqrt[3]{2sin^2u}}du \\ v=sinu, dv=cosudu \\ = -\sqrt2 \int \frac{1}{\sqrt[3]{2v^2}}dv \\ = -\frac{\sqrt2}{\sqrt[3]2} \int v^{-\frac{2}{3}}dv \\ = -\frac{\sqrt2}{\sqrt[3]2} 3v^\frac{1}{3}+C \\ = -\frac{\sqrt2}{\sqrt[3]2} 3\sqrt[3]{sin(\frac{\pi}{4}-x)}+C \)