Tính :
\(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
(Giúp mình với, mk đang cần gấp)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tử số:
$X=1+2+2^2+2^3+...+2^{2008}$
$2X=2+2^2+2^3+2^4+....+2^{2009}$
$\Rightarrow 2X-X=(2+2^2+2^3+2^4+....+2^{2009})-(1+2+2^2+...+2^{2008})$
$\Rightarrow X=2^{2009}-1$
$\Rightarrow S=\frac{X}{1-2^{2009}}=\frac{2^{2009}-1}{-(2^{2009}-1)}=-1$
\(\frac{2009}{1}+\frac{2010}{2}+...+\frac{5016}{2008-2008}\)
\(=\frac{2009}{1}+\frac{2010}{2}+...+\frac{5016}{0}\)
Sau đó QĐM(bạn tự QĐ nha)
\(=\frac{0}{0}+\frac{0}{0}+...+\frac{5016}{0}\)
\(=\frac{5016}{0}=0\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right).x=0\)
Mà \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\ne0\)
\(\Rightarrow x=0\)
1) \(\frac{45^{20}\cdot20^{10}}{3^{15}\cdot6^3}=\frac{3^{40}\cdot5^{20}\cdot5^{10}\cdot2^{20}}{3^{15}\cdot2^3\cdot3^3}\)
\(=\frac{2^{20}\cdot3^{40}\cdot5^{30}}{2^3\cdot3^{18}}=2^{17}\cdot3^{22}\cdot5^{30}\)
2) Ta có: \(2^{2009}+2^{2008}+...+2^1+2^0\)
\(=2^{2010}-1\) đã CM ở rất nhiều bài rồi
=> \(2^{2010}-2^{2010}+1=1\)
a, 1004 .2009 + 1005 = (1005-1) .2009 +1005
= 1005 .2009 -2009 +1005
= 1005 .2009 -1004
Vậy ( 1004 .2009 +1005) / (1005 .2009 -1004) =1
b, 1004 .2010 +1 = 1004 .2009 +1004 +1
= (1006 -2) .2009 +1005
= 1006 .2009 -2 .2009 +1005
= 1006 .2009 -4008 +1005
= 1006 .2009 -3013
Vậy (1004 .2010 +1) / (1006 .2009 -3013) = 1
c, 2007 .2009 -2 = 2007.(2008+1) -2
= 2007.2008 +2007 -2
= 2007.2008 +2005
= (2008-1) .2008 +2005
= 2008 .2008 -2008 +2005
= 2008 .2008 -3
Vậy (2008 .2008 -3) / (2007 .2009 -2) =1
B=\(\frac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)=\(\frac{2+2^2+2^3...+2^{2009}-1-2-2^2-...-2^{2008}}{\left(1-2^{2009}\right)}\)=\(\frac{2^{2009}-1}{1-2^{2009}}\)=-1
Vậy: B=-1
\(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
\(2B=\frac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)
\(2B-B=\frac{\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)}{1-2^{2009}}\)
\(B=\frac{2^{2009}-1}{1-2^{2009}}\)
\(B=-1\)