Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tử số:
$X=1+2+2^2+2^3+...+2^{2008}$
$2X=2+2^2+2^3+2^4+....+2^{2009}$
$\Rightarrow 2X-X=(2+2^2+2^3+2^4+....+2^{2009})-(1+2+2^2+...+2^{2008})$
$\Rightarrow X=2^{2009}-1$
$\Rightarrow S=\frac{X}{1-2^{2009}}=\frac{2^{2009}-1}{-(2^{2009}-1)}=-1$
a, 1004 .2009 + 1005 = (1005-1) .2009 +1005
= 1005 .2009 -2009 +1005
= 1005 .2009 -1004
Vậy ( 1004 .2009 +1005) / (1005 .2009 -1004) =1
b, 1004 .2010 +1 = 1004 .2009 +1004 +1
= (1006 -2) .2009 +1005
= 1006 .2009 -2 .2009 +1005
= 1006 .2009 -4008 +1005
= 1006 .2009 -3013
Vậy (1004 .2010 +1) / (1006 .2009 -3013) = 1
c, 2007 .2009 -2 = 2007.(2008+1) -2
= 2007.2008 +2007 -2
= 2007.2008 +2005
= (2008-1) .2008 +2005
= 2008 .2008 -2008 +2005
= 2008 .2008 -3
Vậy (2008 .2008 -3) / (2007 .2009 -2) =1
Câu 1:
Đặt A = 1 + 2 + 22 + 23+........+ 22008
2A = 2 + 22 + 23 +24 +.......+ 22009
2A - A = ( 2 + 22 + 23 + 24 +.......+ 22009 ) - ( 1 + 2 + 22 + 23+........+ 22008 )
A = [( 2 - 2 ) + ( 22 - 22 ) + ( 23 - 23 ) +......+ ( 22008 - 22008 )] + 22009 - 1
A = 22009 - 1
B = \(\frac{2^{2009}-1}{1-2^{2009}}\)
B = ( -1 )
Câu 2 :
x + 30%x= (-1,31)
x.(30%+1)= (-1,31)
x.1,3= (-1,31)
x = (-1,31) : 1,3
x = \(\frac{-131}{130}\)
1)đặt tử số là A,ta có:
2A=2(1+2+22+23+...+22008)
2A=2*1+2*2+2*22+...+2*22008
2A=2+22+23+...+22009
2A-A=(2+22+23+...+22009)-(1+2+22+...+22008)
A=22009-1
thay A vào tử số ta được \(S=\frac{2^{2009}-1}{1-2^{2009}}=-1\)
2)X+30%X=-1.31
x+\(\frac{3}{10}\)x=-1,31
x(\(\frac{3}{10}+1\))=-1,31
\(x\times\frac{13}{10}=-1\frac{31}{100}\)
\(x=-\frac{131}{100}\div\frac{13}{10}\)
\(x=\frac{-131}{130}\)
a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)
\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)
\(\Leftrightarrow8x=-\frac{5}{4}\)
\(\Leftrightarrow x=-\frac{5}{32}\)
c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)
\(\Leftrightarrow x+1=2003\)
\(\Leftrightarrow x=2002\)
B=\(\frac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)=\(\frac{2+2^2+2^3...+2^{2009}-1-2-2^2-...-2^{2008}}{\left(1-2^{2009}\right)}\)=\(\frac{2^{2009}-1}{1-2^{2009}}\)=-1
Vậy: B=-1
\(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
\(2B=\frac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)
\(2B-B=\frac{\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)}{1-2^{2009}}\)
\(B=\frac{2^{2009}-1}{1-2^{2009}}\)
\(B=-1\)