Tìm các số tự nhiên n biết:
a)6 chia hết (n-1)
b)8 chia hết (n-1)
c)14 chia hết(2n+3)
CẦN CÁCH TRÌNH BÀY NHÉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ
ai tích mình lên 10 cái mình tích người ấy cả tháng
a)
6 chia hết cho n-1
=>n-1 thuộc Ư(6)={1;2;3;6}
=>n thuộc {2;3;4;7}
b/
8 chia hết cho n-1
=>n-1 thuộc U(8)={1;2;4;8}
=>n thuộc {2;3;5;9}
c/
14 chia hết cho 2n+3
=>2n+3 thuộc U(14)={1;2;7;14}
2n+3=1=>2n=-2=>n=-1 loại
2n+3=2=>2n=-1=>n=-1/2 loại
2n+3=7=>2n=4=>n=2 TM
2n+3=14=>2n=11=>n=11/2 laoij
vậy n=2
a, 6 chia hết cho n-1
=>n-1 thuộc Ư(6)={1;2;3;6}
=>n thuộc {2;3;4;7} (vì n thuộc N)
b,14 chia hết cho 2n+3
=>2n+3 thuộc Ư(14)={1;2;7;14}
=>n thuộc {2} (vì n thuộc N)
c , n+8 chia hết n+1
=>n+1+7 chia hết n+1
=>7 chia hết n+1
=>n+1 thuộc Ư(7)={1;7}
=>n thuộc {0;6} (vì n thuộc N)
Lời giải:
a.
$2n+7\vdots n+2$
$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$
$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
tự nhiên)
$\Rightarrow n\in\left\{-1;1\right\}$
Vì $n$ là số tự nhiên nên $n=1$
b.
$4n-5\vdots 2n-1$
$\Rightarrow 2(2n-1)-3\vdots 2n-1$
$\Rightarrow 3\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$
$\Rightarrow n\in\left\{1;0; 2; -1\right\}$
Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$
a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:
\(n-2\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(n\) | \(3\) | \(4\) | \(5\) | \(8\) |
Vậy \(n\in\left\{3;4;5;8\right\}\)
b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:
\(n-1\) | \(1\) | \(2\) | \(4\) |
\(n\) | \(2\) | \(3\) | \(5\) |
Vậy \(n\in\left\{2;3;5\right\}\)
câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html
câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html