CMR: 1 + 2 + 3 + 4 + ... + 2010 < 5
5 52 53 54 52010 16
Cho mik hỏi các bạn có bí quyết ôn thi nào hiệu quả ko a???
Chỉ mik với nka!!! Nhanh mik tik cho!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trừi ơi , bạn có thôi ngay cái tính đó ko ,
bạn nói kiểu này , có khi bạn cần bài toán nào , bạn đăng lên ko ai làm đâu
Ta có : 1/2^2<1/1.2
1/3^2 < 1/2.3
1/4^2<1/3.4
................
.............
1/2010^2<1/2009.2010
=> 1/2^2+1/3^2+1/4^2+1/5^2+.....+1/2010^2 < 1/1.2+1/2.3+1/3.4+....+1/2009.2010
=> 1/2^2+1/3^2+1/4^2+1/5^2+.....+1/2010^2 < 1-1/2009
=> 1/2^2+1/3^2+1/4^2+1/5^2+.....+1/2010^2 < 2008/2009 < 1
Vậy 1/2^2+1/3^2+1/4^2+1/5^2+.....+1/2010 < 1
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2009}-\frac{1}{2010}=1-\frac{1}{2010}=\frac{2009}{2010}<1\)
Thôi, cho phép mình góp ý bài mình đã làm bằng cách đơn giản hơn nha ^^.
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có:
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)
\(=A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2009}-\frac{1}{2010}\)
\(\Rightarrow A< 1-\frac{1}{2010}\)
\(\Rightarrow A< 1\)
\(\Rightarrow A< \frac{3}{4}\)
Có: \(\frac{1}{2^2}< \frac{1}{1.2}\); \(\frac{1}{3^2}< \frac{1}{2.3}\);...;\(\frac{1}{2010^2}< \frac{1}{2009.2010}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}=1-\frac{1}{2010}=\frac{2009}{2010}\)Mà \(\frac{2009}{2010}>\frac{3}{4}\) -> Sai đề
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=13\cdot\left(3+3^4+...+3^{2008}\right)\)
\(=13\cdot\left[3\left(1+3^3\right)+...+3^{2005}\left(1+3^3\right)\right]\)
\(=13\cdot4\cdot7\cdot\left(3+...+3^{2005}\right)⋮52\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(\Rightarrow N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(\Rightarrow N< 1-\frac{1}{2010}\)
\(\Rightarrow N< 1\left(đpcm\right)\)
Chúc bạn học tốt !!!!
Đặt \(S=\frac{1}{5}+\frac{2}{5^2}+...+\frac{2010}{5^{2010}}\)
\(\Rightarrow5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2010}{5^{2009}}\)
\(\Rightarrow5S-S=\left(1+...+\frac{2010}{5^{2009}}\right)-\left(\frac{1}{5}+...+\frac{2010}{5^{2010}}\right)\)
\(\Rightarrow4S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2009}}+\frac{2010}{5^{2010}}\)
Đặt \(A=\frac{1}{5}+...+\frac{1}{5^{2009}}\)
\(\Rightarrow5A=1+...+\frac{1}{5^{2008}}\)
\(\Rightarrow5A-A=\left(1+...+\frac{1}{5^{2008}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{2009}}\right)\)
\(\Rightarrow4A=1-\frac{1}{5^{2009}}\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{5^{2009}.4}< \frac{1}{4}\)
\(\Rightarrow A< \frac{1}{4}\)
\(\Rightarrow4S< 1+\frac{1}{4}\)
\(\Rightarrow4S< \frac{5}{4}\)
\(\Rightarrow S< \frac{5}{16}\left(đpcm\right)\)
Anh xin lỗi nhé dòng thứ 4 là \(4S=1+\frac{1}{5}+...+\frac{1}{5^{2009}}-\frac{2010}{5^{2010}}\)