Cho:A=1/2+1/3+1/4+.....+1/100
B=1/99+2/98+2/97+.....+99/1
Tính B/A
Các bạn giải chi tiết ra nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2-3-4+5+6-7-8+..........+97+98-99-100
=(1+2-3-4)+(5+6-7-8)+.........+(97+98-99-100)
=(-4)+(-4)+.....+(-4) (25 số -4)
=(-4)x25
=-100
\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)
\(\Rightarrow\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}+4=0\)
\(\Rightarrow\left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)+\left(\dfrac{x+4}{96}+1\right)=0\)
\(\Rightarrow\dfrac{x+100}{99}+\dfrac{x+100}{98}+\dfrac{x+100}{97}+\dfrac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\right)=0\)
\(\Rightarrow x=-100\)(do \(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}>0\))
C = 2100 - 299 - 298 -...- 2 - 1
C = 2100 - (299 + 298 +...+ 2 + 1)
Đặt S = 299 + 298 +...+ 2 + 1
2S = 2100 + 299 +...+ 22 + 2
=> 2S - S = 2100 - 1
=> S = 2100 - 1
=> C = 2100 - (2100 - 1)
=> C = 2100 - 2100 + 1 = 1
Vậy C = 1
a) áp dụng hằng đẳng thức a^2 - b^2 = (a-b) .( a+b) ta có:
100^2 -99^2 + 98^2 - 97^2 +...........+2^2 -1^2
=(100-99).(100+99) + (98-97).( 98+97) +..........+ (2-1).(2+1)
=199 + 195 + ..................+ 3
= 25 . (199+3)
=5050
Đặt A = 1 - 2 + 3 - 4 + 5 - 6 + ......+ 97 - 98 + 99 - 100
<=> A = ( 1 - 2 ) + ( 3 - 4 ) + ( 5 - 6 ) + ...... + ( 97 - 98 ) + ( 99 - 100 )
<=> A = ( - 1 ) + ( - 1 ) + ( - 1 ) + ...... + ( - 1 ) + ( - 1 ) ( Có 50 số )
=> A = ( - 1 ) . 50 = - 50
Vậy A = - 50
\(\frac{B}{A}=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\frac{B}{A}=\frac{1+\left[\frac{1}{99}+1\right]+\left[\frac{2}{98}+1\right]+\left[\frac{3}{97}+1\right]+...+\left[\frac{98}{2}+1\right]}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\frac{B}{A}=\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\frac{B}{A}=\frac{100\cdot\left[\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right]}{\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right]}=100\)
Vậy : \(\frac{B}{A}=100\)
Ta có:
\(B=\frac{1}{99}+\frac{2}{98}+...+\frac{99}{1}\)
\(=\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1\)
\(=\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}\)
\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
\(=100.A\)
\(\Rightarrow\frac{B}{A}=100\)