K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

Đây là hệ quả của bất đẳng thức Cô-si (AM-GM) áp dụng cho 2 số dương a,b

Lớp 8 mới hok đó nên c/m cũng phải theo cách lớp 8 sợ bạn ko hỉu -_- (hok 7 hằng đẳng thức đáng nhớ với quy tắc biến đổi bất phương trình rùi thì Ok)

29 tháng 4 2019

giúp mik vs,đây là toán lớp 6,thầy cho bn tớ 

Ta có: 1+1/2 +1/3 +...+1/98 

=(1+1/98 )+(1/2 +1/97 )+(1/3 +1/96 )+...+(1/49 +1/50 )

=99/1.98 +99/2.97 +99/3.96 +...+99/49.50 

=99(1/1.98 +1/2.97 +1/3.96 +...+1/49.50 )

⇒A=(1+1/2 +1/3 +...+1/98 ).2.3.4....98

=99(1/1.98 +1/2.97 +1/3.96 +...+1/49.50 ).2.3.4....98chia hết cho 99 (đpcm)

13 tháng 8 2015

a.

ọi số thứ nhất là x, số thứ 2 là x + 1 

Có x . (x +1) = 111222 

<=> x² + x = 111222 

Cộng cả 2 vế với 1/4, ta có 

x² + x + 1/4 = 111222,25 

<=> x² + 2 . 1/2.x + (1/2)² = 111222,25 (xuất hiện hằng đẳng thức) 

<=> (x + 1/2)² = 111222,25 

<=> x + 1/2 = 333,5 

<=> x = 333 

Vậy số thứ nhất là 333, số thứ 2 là 334. Tích 2 số này bằng 111222

Còn lại mỏi tay quá

 

13 tháng 9 2018

Bạn xem lời giải của bạn Đức Nhật Huỳnh ở đường link dưới nhé:

Câu hỏi của Nguyễn Thị Thảo Ly - Toán lớp 6 - Học toán với OnlineMath

11 tháng 10 2017

a,   Nếu \(a⋮2\Rightarrow\)có 1 số chia hết cho 2

 Nếu a ko chia hết cho 2 =>a là số lẻ

             a=2k+1

=>a+1=(2k+1)+1

=>2k+2chia hết cho 2(vì 2k chia hết cho 2 và 2 cũng chia hết cho 2)

b,     Nếu a chia hết cho 3=> có 1 số chia hết cho 3

        Nếu a=3k+1 thì =>a+2=3k+3, chia hết cho 3

                 nếu a=3k+2 thì

        =>a+1=3k+3, chia hết cho 3.

11 tháng 10 2017

A) Gọi 2 số tự nhiên liên tiếp là n,n +1(n thuộc N)

Nếu nguyễn chia hết cho 2 thì ta có điều chứng tỏ 

Nếu = 2k + 1 thì 2 + 1 = 2k +2 chia hết cho 2

B) 

Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ

Nếu n = 2k + 1 thì n + 1 = 2k +2 chia hết cho 2

b)Gọi 2 số tự nhiên liên tiếp là:n,n+1,n+2(n

4 tháng 9 2019

Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath

16 tháng 5 2020

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

16 tháng 5 2020

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c

a,vì trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn  mà số chẵn thì chia hết cho 2 

mk chỉ biết vậy thôi

6 tháng 8 2017

b) gọi 3 số đó là a;b;c ta có :

a:3 = ?(dư 1)

b:3=(?(duw2)

c:3 = ?(dư 0)

=> a+b+c :3 (dư 0)

6 tháng 8 2017

a+b+c:3(dư 0)

16 tháng 3 2018

\(\frac{c}{ab+1}\le\frac{c}{a+b}\)

\(\frac{a}{bc+1}\le\frac{a}{b+c}\)

\(\frac{b}{ac+1}\le\frac{b}{a+c}\)

\(\Rightarrow\)\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

suy ra.....

16 tháng 3 2018

Truy cập link này nhé:

https://olm.vn/hoi-dap/question/601162.html?auto=1