K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Bài 1:
Gọi $I$ là tâm đường tròn. Vì $I$ nằm trên đt \(\Delta: 3x-y+7=0\) nên $I$ có tọa độ $(a,3a+7)$

Đường tròn tiếp xúc với trục Ox nên:

\(d(I,Ox)=R=1\Leftrightarrow |3a+7|=1\Rightarrow \left[\begin{matrix} a=-2\\ a=\frac{-8}{3}\end{matrix}\right.\)

Nếu \(a=-2\Rightarrow I(-2, 1)\). PTĐTr là:

\((x+2)^2+(y-1)^2=1\)

Nếu \(a=-\frac{8}{3}\Rightarrow I(\frac{-8}{3}, -1)\). PTĐTr là:

\((x+\frac{8}{3})^2+(y+1)^2=1\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Bài 2:

Ta viết lại pt đường tròn:

\(x^2+y^2-2x-4y-4=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2-9=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2=9\)

Vậy đường tròn $(C)$ có tâm $I(1,2)$ và bán kính $R=3$

Có : \(d(I,(d))=\frac{|3x_I+4y_I+4|}{\sqrt{3^2+4^2}}=\frac{|3.1+4.2+4|}{5}=3=R_{(C)}\)

Do đó đường thẳng (d) tiếp xúc với đường tròn $(C)$

10 tháng 4 2018

a) x2 + y2 – 4x + 8y – 5 = 0

⇔ (x2 – 4x + 4) + (y2 + 8y + 16) = 25

⇔ (x – 2)2 + (y + 4)2 = 25.

Vậy (C) có tâm I(2 ; –4), bán kính R = 5.

b) Thay tọa độ điểm A vào phương trình đường tròn ta thấy:

(–1 – 2)2 + (0 + 4)2 = 32 + 4= 52= R2

⇒ A thuộc đường tròn (C)

⇒ tiếp tuyến (d’) cần tìm tiếp xúc với (C) tại A

⇒ (d’) là đường thẳng đi qua A và vuông góc với IA

⇒ (d’) nhận Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt và đi qua A(–1; 0)

⇒ phương trình (d’): 3(x + 1) – 4(y - 0)= 0 hay 3x – 4y + 3 = 0.

c) Gọi tiếp tuyến vuông góc với (d) : 3x – 4y + 5 = 0 cần tìm là (Δ).

(d) có Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt; 1 VTCP là ud(4; 3)

(Δ) ⊥ (d) ⇒ (Δ) nhận Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt

⇒ (Δ): 4x + 3y + c = 0.

(C) tiếp xúc với (Δ) ⇒ d(I; Δ) = R

Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10

Vậy (Δ) : 4x + 3y + 29 = 0 hoặc 4x + 3y – 21 = 0.

3 tháng 5 2016

Tâm I thuộc đường thẳng x+y-3=0 nên I(a;3-a).

Đường tròn có tâm I bán kính R=1 tiếp xúc với trục hoành nên

d(I,Ox)=|3-a|=1, suy ra 3-a=1 hoặc 3-a=-1

  •  Nếu 3-a=1 thì a=2, I(2;1), \((C):(x-2)^2+(y-1)^2=1\).
  • Nếu 3-a=-1 thì a=4, I(4;-1), \((C):(x-4)^2+(y+1)^2=1\)
18 tháng 5 2021

I I 1 I 2 d :3x-4y+1=0 1 d :6x+8y-1=0 2 p:3x+y-1=0

Đường tròn (C) tiếp xúc với d1 và d2 , suy ra tâm của nó nằm trên đường phân giác của góc (d1;d2)

Khoảng cách từ một điểm bất kì trên phân giác của góc đến hai cạnh của góc thì bằng nhau, ta có:

\(\frac{\left|3x-4y+1\right|}{5}=\frac{\left|6x+8y-1\right|}{10}\Leftrightarrow\orbr{\begin{cases}2\left(3x-4y+1\right)=6x+8y-1\\2\left(3x-4y+1\right)=-6x-8y+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}16y-3=0\\12x+1=0\end{cases}}\)

Xét hệ \(\hept{\begin{cases}3x+y-1=0\\16y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{48}\\y=\frac{3}{16}\end{cases}}\Rightarrow I_1\left(\frac{13}{48};\frac{3}{16}\right)\Rightarrow R_1=\frac{17}{80}\)

\(\Rightarrow\left(C_1\right):\left(x-\frac{13}{48}\right)^2+\left(y-\frac{3}{16}\right)^2=\frac{289}{6400}\)

Xét hệ: \(\hept{\begin{cases}3x+y-1=0\\12x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{12}\\y=\frac{5}{4}\end{cases}}}\Rightarrow I_2\left(-\frac{1}{12};\frac{5}{4}\right)\Rightarrow R_2=\frac{17}{20}\)

\(\Rightarrow\left(C_2\right):\left(x+\frac{1}{12}\right)^2+\left(y-\frac{5}{4}\right)^2=\frac{289}{400}\).

19 tháng 5 2021

Đường tròn (C) tiếp xúc với d1 và d2 , suy ra tâm của nó nằm trên đường phân giác của góc (d1;d2)

Khoảng cách từ một điểm bất kì trên phân giác của góc đến hai cạnh của góc thì bằng nhau, ta có:

|3x−4y+1|5 =|6x+8y−1|10 ⇔[

2(3x−4y+1)=6x+8y−1
2(3x−4y+1)=−6x−8y+1

⇔[

16y−3=0
12x+1=0

Xét hệ {

3x+y−1=0
16y−3=0

⇔{

x=1348 
y=316 

⇒I1(1348 ;316 )⇒R1=1780 

⇒(C1):(x−1348 )2+(y−316 )2=2896400 

Xét hệ: {

3x+y−1=0
12x+1=0

⇔{

x=−112 
y=54 

⇒I2(−112 ;54 )⇒R2=1720 

⇒(C2):(x+112 )2+(y−54 )2=289400 .

16 tháng 2 2017

31 tháng 7 2017

Đáp án: C

Ta có:

(C): x 2  + y 2  + 2x + 4y = 0 ⇔ (x + 1 ) 2  + (y + 2 ) 2  = 5

⇒ I(-1;-2), R = 5

Vì d’ song song với d nên d': 2x + y + c = 0, (c ≠ -3)

Đường thẳng d’ tiếp xúc với (C) nên

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Vậy phương trình đường thẳng d’ là: 2x + y - 1 = 0 hoặc 2x + y + 9 = 0