K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2018

a, AD là phân giác  B A C ^

=> D là điểm chính giữa  B C ⏜ => OD ⊥ BC

Mà DE là tiếp tuyến => ĐPCM

b,  E C D ^ = 1 2 s đ C D ⏜ = D A C ^ = B A D ^ => Đpcm

c, HC =  P 3 2 =>  H O C ^ = 60 0 =>  B O C ^ = 120 0

=>  l B C ⏜ = π . R . 120 0 180 0 = 2 3 πR

4 tháng 4 2018

Giúp mình nhanh nhé các bạn!

29 tháng 1 2019

A B C O D E K M F T y x

c) Gọi T là giao điểm thứ hai của FD với đường tròn (O). Ta c/m EO đi qua T.

Ta có: ^ADM = ^DAC + ^DCA = ^BAC/2 + ^ACB = ^BAD + ^MAB = ^MAD => \(\Delta\)DAM cân tại M => MA=MD

Lại có: MA và MF là 2 tiếp tuyến của (O) nên MA=MF. Do đó: MD=MF => \(\Delta\)MDF cân tại M (đpcm).

Dễ thấy: \(\Delta\)MAB ~ \(\Delta\)MCA (g.g) và \(\Delta\)MFB ~ \(\Delta\)MCF (g.g)

=> \(\frac{MA}{MC}=\frac{MF}{MC}=\frac{AB}{AC}=\frac{BD}{CD}=\frac{FB}{FC}\) => FD là tia phân giác ^BFC (1)

Kẻ tia đối Fy của FB => ^EFy = ^ECB = ^EBC = ^EFC => FE là phân giác ^CFy (2)

Từ (1) và (2) suy ra: FD vuông góc với FE (Vì ^BFC + ^CFy = 1800) hay ^EFT = 900  

=> ET là đường kính của (O) => ET trùng với OE => OE đi qua T => ĐPCM.

d) Áp dụng ĐL Ptolemy có tứ giác BFCT nội tiếp có: BF.CT + CF.BT = BC.FT

=> CT.(BF+CF) = BC.FT => \(BF+CF=\frac{BC.FT}{CT}\le\frac{BC.ET}{CT}=\frac{2CK.ET}{CT}=2EC=2BE\)

Dấu "=" xảy ra khi F trùng với E <=> MF vuông góc OE <=> MF // BC => M không nằm trên BC (mâu thuẫn)

=> Không có dấu "=" => BF+CF < 2BE (đpcm). 

30 tháng 4 2020

mình không vẽ hình nha

30 tháng 4 2020

a) vì AD là tia phân giác \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAD}=\widehat{DAC}\)\(\Rightarrow\)D là điểm chính giữa BC

\(\Rightarrow OD\perp BC\)

Mà \(DE\perp OD\)

\(\Rightarrow BC//DE\)

b) Ta có : \(\widehat{DAC}=\widehat{DCI}=\frac{1}{2}sđ\widebat{CD}\)

\(\Rightarrow\widehat{KAD}=\widehat{KCI}\)

suy ra tứ giác ACIK nội tiếp 

c) OD cắt BC tại H

Dễ thấy H là trung điểm BC nên HC = \(\frac{BC}{2}=\frac{\sqrt{3}}{2}R\)

Xét \(\Delta OHC\)vuông tại H có :

\(HC=OC.\sin\widehat{HOC}\Rightarrow\sin\widehat{HOC}=\frac{HC}{OC}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\widehat{HOC}=60^o\)

\(\Rightarrow\widehat{BOC}=120^o\)

\(\Rightarrow\widebat{BC}=120^o\)

P/s : câu cuối là tính số đo cung nhỏ BC mà sao có cái theo R. mình ko hiểu. thôi thì bạn cứ xem đi nha. 

a)Xét tứ giác MBOC có 

\(\widehat{OBM}\) và \(\widehat{OCM}\) là hai góc đối

\(\widehat{OBM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MBOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

15 tháng 3 2023

giúp em đi ạ