K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

Ta có : 

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}\)

\(A=\frac{2.3.4.....2015}{2.3.4.....2015}.\frac{1}{2016}\)

\(A=\frac{1}{2016}\)

Vậy \(A=\frac{1}{2016}\)

Chúc bạn học tốt ~ 

8 tháng 6 2018

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}\)

\(\Rightarrow A=\frac{1.2.3..2015}{2.3.4..2016}\)

\(\Rightarrow A=\frac{1}{2016}\)

13 tháng 8 2017

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{102}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{101}{102}=\frac{1}{102}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}=\frac{C}{D}\)

Ta có: \(D=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)(có 2015 số hạng)

          \(D=\left(\frac{2015}{1}+1\right)+\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)-2015\)

          \(D=2016+\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}-2015\)

          \(D=\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}+1=\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}+\frac{2016}{2016}\)

          \(D=2016\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)=2016C\)

Vậy \(B=\frac{C}{D}=\frac{C}{2016C}=\frac{1}{2016}\)

14 tháng 8 2017

\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{102}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{101}{102}=\frac{1\cdot2\cdot3\cdot....\cdot101}{2\cdot3\cdot4\cdot....\cdot102}\)

\(A=\frac{1}{102}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\left(\frac{2015}{1}+1\right)+\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)+1}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2016}{2}+...+\frac{2016}{2015}+\frac{2016}{2016}}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{2016\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}=\frac{1}{2016}\)

24 tháng 9 2016

\(C=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+..+\frac{1}{2016}.\left(1+2+3+...+2016\right)\)

\(C=1+\frac{1}{2}.\left(1+2\right).2:2+\frac{1}{3}.\left(1+3\right).3:2+\frac{1}{4}.\left(1+4\right).4:2+...+\frac{1}{2016}.\left(1+2016\right).2016:2\)

\(C=1+3:2+4:2+5:2+...+2017:2\)

\(C=2.\frac{1}{2}+3.\frac{1}{2}+4.\frac{1}{2}+5.\frac{1}{2}+...+2017.\frac{1}{2}\)

\(C=\frac{1}{2}.\left(2+3+4+5+...+2017\right)\)

\(C=\frac{1}{2}.\left(2+2017\right).2016:2\)

\(C=\frac{1}{2}.2019.2016.\frac{1}{2}\)

\(C=2019.504=1017576\)

24 tháng 9 2016

sao lại chia 2

11 tháng 4 2015

\(\Rightarrow2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2014}\)

\(\Rightarrow2A-A=A=1-\left(\frac{1}{2}\right)^{2015}\)

Với B tương tự nhưng là lấy 3B

3 tháng 5 2019

lay