K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

a) S= 1+3+32+33+...+399

  3S= 3.(1+3+32+33+...+399)

 3S= 3+32+33+34+...+3100

3S - S =2S= 3100-1

Vậy S= \(\frac{3^{100}-1}{2}\)

Bài 1:

=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)+101^2

=101^2-(1+2+3+...+99+100)

=101^2-100*101/2=5151

1 tháng 10 2017

S=1+2+2^2+2^3+....+2^59 chia hết cho 3

S=(1+2)+(2^2+2^3)+..+(2^58+2^59)

S=1x(1+2)+2^2x(1+2)+.....+2^58x(1+2)

S=1x3+2^2x3+....+2^58x3

S=3x(1+2^2+.....+2^58)chia hết cho 3

Vậy S chia hết cho 3

tương tự chia hết cho 7 thì ghép 3 số đầu; 15 thì ghép 4 số

you học lớp mấy

27 tháng 9 2017

a) Ta có: \(S=1+2+2^2+...+2^{59}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{60}\)

\(\Rightarrow S=2S-S=\left(2+2^2+...+2^{60}\right)-\left(1+2+...+2^{59}\right)\)

\(\Rightarrow S=2^{60}-1\)

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

11 tháng 10 2018

a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.

Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)

=3(a+1) \(⋮3\)(vì \(3⋮3\))

Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.

b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3

Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6

=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)

Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.

11 tháng 10 2018

a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )

Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3

b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )

Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.

16 tháng 7 2016

cu 2 so tu nhien lien tiep thi co 1 so chan 1 so le

suy ra: le + chan= le

ma so le ko chia het cho 2

suy ra tong hai so tu nhien lien tiep khong chia het cho 2

7 tháng 11 2018

cứ tổng hai số hạng sẽ chia hết cho 3 nhé 

7 tháng 11 2018

\(A=1+2+2^2+2^3+...+2^{11}\)

\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right)\)

\(A=3+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)

\(A=3+2^2.3+...+2^{10}.3\)

\(A=3\left(1+2^2+...+2^{10}\right)\)

\(\Rightarrow A⋮3\)                  

Vậy \(A⋮3\)

  !!!