K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cô giáo em và em đang tranh cãi một vấn đề:Làm cách nào để chứng minh 3 điểm bất kì trong hệ Oxy tạo thành một tam giác?Cách 1 (cách của cô): Chứng minh tổng độ dài giữa 2 cạnh luôn lớn hơn cạnh còn lại.Cách 2 (cách của em): Chứng minh diện tích tạo thành giữa 3 điểm đó không bằng 0.Cô cứ khăng khăng bảo cách của em là thiếu, không hoàn chỉnh, rồi đưa ra bằng chứng là có thể có...
Đọc tiếp

Cô giáo em và em đang tranh cãi một vấn đề:

Làm cách nào để chứng minh 3 điểm bất kì trong hệ Oxy tạo thành một tam giác?

Cách 1 (cách của cô): Chứng minh tổng độ dài giữa 2 cạnh luôn lớn hơn cạnh còn lại.

Cách 2 (cách của em): Chứng minh diện tích tạo thành giữa 3 điểm đó không bằng 0.

Cô cứ khăng khăng bảo cách của em là thiếu, không hoàn chỉnh, rồi đưa ra bằng chứng là có thể có trường hợp tổng 2 cạnh bé hơn cạch còn lại (ví dụ như 5, 1, 1). Em biết trường hợp đó dùng cách của em là không thể xảy ra, nhưng không biết chứng minh thế nào. Nhờ mọi người phân biệt ai đúng ai sai, và nếu cách của em đúng thì ai đó chứng minh hộ em được không?

Em xin cảm ơn.

(Em biết là còn 1 cách nữa là dùng vector, nhưng xin mọi người chỉ xem xét 2 cách trên thôi nhé)

1
22 tháng 3 2019

cách cô giáo đùng

29 tháng 3 2016

Nguyên lí Đi dép lê à? Ngu cái nài nhất

22 tháng 11 2017

Trong tam giác ACD có góc ACD là góc tù .

Mà AD là cạnh đối diện với góc ACD.

⇒ AD là cạnh lớn nhất trong tam giác ACD (cạnh đối diện với góc tù là cạnh lớn nhất trong tam giác).

nên AD > AC hay AC < AD

Vậy Nếu : BC < BD thì AC < AD.

20 tháng 3 2016

Nếu :  ∆ABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB;

AM ≤ AC

+ Nếu M  ≡ A hoặc M  ≡  B ( Kí hiệu đọc là trùng với) thì AM = AB, AM = AC.

+ Nếu M nằm giữa B và C; ( M ≢  B , C). Gọi H là trung điểm của BC, mà ∆ABC cân tại A nên AH ⊥ BC

+ Nếu M ≡ H => AM ⊥ BC => AM < AB và AM < AC

+ Nếu M ≢ K giả sử M nằm giữa H và C=> MH < CH

Vì MN và CH là hình chiếu MA và CA trên đường BC nên MA < CA => MA < BA

Chứng minh tương tự nếu M nằm giữa H và B thì MA < AB, MA < AC

Vậy mọi giá trị của M trên cạnh đáy BC thì AM ≤  AB, AM ≤ AC

5 tháng 8 2017

Giả sử   ∆ABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB;

AM ≤ AC

+ Nếu M  ≡ A hoặc M  ≡  B ( Kí hiệu đọc là trùng với) thì AM = AB, AM = AC.

+ Nếu M nằm giữa B và C; ( M ≢  B , C). Gọi H là trung điểm của BC, mà ∆ABC cân tại A nên AH ⊥ BC

+ Nếu M ≡ H => AM ⊥ BC => AM < AB và AM < AC

+ Nếu M ≢ K giả sử M nằm giữa H và C=> MH < CH

Vì MN và CH là hình chiếu MA và CA trên đường BC nên MA < CA => MA < BA

Chứng minh tương tự nếu M nằm giữa H và B thì MA < AB, MA < AC

Vậy mọi giá trị của M trên cạnh đáy BC thì AM ≤  AB, AM ≤  AC

29 tháng 9 2020

Áp dụng định lí Pitago trong tam giác ABC 

=> \(BC=5\sqrt{2}>7\)

Xét tam giác MBC có: MB + MC > BC >7 

Xét tam giác NBC có: NB + NC > BC > 7 

=> ( MB + NB ) + ( MC + NC ) > 14 

+) Nếu MB + NB < 7 => MC + NC > 7 

+) Nếu MC + NC < 7 => MB + NB > 7

=> Tồn tại một trong hai tổng MB + NB ; MC + NC sẽ lớn hơn 7 

Vậy ...