K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)

\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)

\(M=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\) với mọi x

=>\(\left(x+1\right)^2+1\ge1\) với mọi x

=>GTNN của M là 1

Dấu "=" xảy ra <=> x+1=0<=>x=-1

18 tháng 5 2016

Mmin=1 khi x=-1

2:

|x+4|>=0

=>-|x+4|<=0

=>B<=11

Dấu = xảy ra khi x=-4

15 tháng 6 2015

\(M=x^2-4x+4+9=\left(x-2\right)^2+9\ge9\Rightarrow MinM=9\Leftrightarrow x=2\)

\(P=10x-x^2+6=-\left(x^2-10x+25\right)+25+6=31-\left(x-5\right)^2\le31\Rightarrow MaxP=31\Leftrightarrow x=5\)

15 tháng 6 2015

1) tìm giá trị nhỏ nhất của M = x(x-4) + 13

M=x(x-4)+13=x2-4x+13

=x2-4x+4+9

=(x-2)2+9\(\ge\)9(vì (x-2)2\(\ge\)0)

Dấu "=" xảy ra khi x-2 =0

                         <=>x=2

Vậy giá trị nhỏ nhất của M là 9 tại x=2

2) tìm giá trị lớn nhất của P = x(10-x) +6

 P = x(10-x) +6=10x-x2+6=-x2+10x-25+31

                                    =-(x2-10x+25)+31

                                    =-(x-5)2+31\(\le\)31(vì -(x-5)2\(\le\)0)

Dấu = xảy ra khi x-5=0

                      <=>x=5

vậy giá trị lớn nhất của P là 31 tại x=5

Bài 9:

a: f(-4)=0

=>-4(m-1)+3m-1=0

=>-4m+4+3m-1=0

=>-m+3=0

=>m=3

b: f(-5)=-1

=>-5(m-1)+3m-1=-1

=>-5m+5+3m-1=-1

=>-2m+4=-1

=>-2m=-5

=>m=5/2

NV
20 tháng 1 2021

\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Để \(g\left(x\right)_{min}>0\Rightarrow f\left(x\right)=0\) vô nghiệm trên đoạn đã cho

\(\Rightarrow\left[{}\begin{matrix}-m< -2\\-m>7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -7\end{matrix}\right.\)

\(g\left(0\right)=\left|m-1\right|\) ; \(g\left(1\right)=\left|m-2\right|\) ; \(g\left(2\right)=\left|m+7\right|\)

Khi đó \(g\left(x\right)_{min}=min\left\{g\left(0\right);g\left(1\right);g\left(2\right)\right\}=min\left\{\left|m-2\right|;\left|m+7\right|\right\}\)

TH1: \(g\left(x\right)_{min}=g\left(0\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m-2\right|\le\left|m+7\right|\\\left|m-2\right|=2020\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{5}{2}\\\left|m-2\right|=2020\end{matrix}\right.\) \(\Rightarrow m=2022\)

TH2: \(g\left(x\right)_{min}=g\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m+7\right|\le\left|m-2\right|\\\left|m+7\right|=2020\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{2}\\\left|m+7\right|=2020\end{matrix}\right.\) \(\Rightarrow m=-2027\)

https://lazi.vn/timthumb.php?src=uploads/edu/answer/1615643998_lazi_664211.jpeg&w=700

Bạn tham khảo nha

HT