Hai số tự nhiên 5x và 7x có tổng các chữ số bằng nhau. Chứng minh rằng số tự nhiên x chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một số và tổng các chữ số của chúng khi chia cho 9 có cùng số dư và hiệu của chúng chia hết cho 9
Gọi tổng các chữ số của a và 4a là k, ta có:
4a - k chia hết cho 9
a - k chia hết cho 9
=> (4a - k ) - ( a -k) chia hết cho 9
=> 3a chia hết cho 9
=> a chia hết cho 3 (đpcm)
Bạn tham khảo ở đây: https://olm.vn/hoi-dap/question/288658.html
2x và x có tổng các chữ số cùng bằng y <=> x=9k
Khi đó: x=9 ; 2x=9k.2 <=>x=9;2x=18k
Vậy (1+8).k=9k <=> 1k+8k=9k <=> 9k=9k (đpcm)
Do đó x=9k hay x chia hết cho 9 thì 2x có tổng các chữ số bằng x và bằng y....
gọi tổng các chữ số của 5x và 7x đều là k
Ta có :
7x-k và 5x-k đều chia hết cho 9 (vì có số dư khi chia cho 9 bằng nhau)
(7x-k)-(5x-k)=2x chia hết cho 9
mà 2 và 9 nguyên tố cùng nhau
do đó x chia hết cho 9 (đpcm)