K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

\(R=\frac{1}{2.32}+\frac{1}{3.33}+......+\frac{1}{1976.2006}\Rightarrow30R=\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1976}-\frac{1}{32}-\frac{1}{33}-....-\frac{1}{2006}=\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{31}-\frac{1}{1977}-\frac{1}{1978}-....-\frac{1}{2006};S=\frac{1}{2.1977}+\frac{1}{3.1978}+....+\frac{1}{31.2006}=\Rightarrow1975S=\frac{1}{2}+\frac{1}{3}+....+\frac{1}{31}-\frac{1}{1977}-\frac{1}{1978}-....-\frac{1}{2006}=R\Rightarrow30R=1975S\Rightarrow R=\frac{1975}{30}S=\frac{395}{6}\Rightarrow\frac{R}{S}=\frac{395}{6}\)

26 tháng 3 2023

cái cuối là \(R\left(2023\right)\) hay 2.2023 vậy bạn ?

Sửa đề: 1/R(2023)

R(3)=1*3

R(4)=2*4

R(5)=3*5

...

R(2022)=2020*2022

R(2023)=2021*2023

=>\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{2021\cdot2023}+\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{2020\cdot2022}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2021\cdot2023}+\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2020\cdot2022}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{2022}{2023}+\dfrac{505}{1011}\right)\simeq0.7496\)

13 tháng 8 2017

\(b,\) Ta có:

\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)

Thay:

\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)

\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)

\(...\)

\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)

13 tháng 8 2017

Tiếp phần b ( do máy lag) :3

Cộng 2 vế với nhau, ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}\\ =1-\dfrac{1}{\sqrt{2007}}\)

5 tháng 11 2017

bạn tham khảo nha, cách làm như vậy đó

Câu hỏi của Nguyễn Thị Mai Ca - Toán lớp 7 - Học toán với OnlineMath 

5 tháng 11 2017

ban kia lam dung roi do

k tui nha 

thanks

4 tháng 11 2017

Bài 1.

a) Do hai phân thức bằng nhau , ta có :

( x +2)P( x2 - 22) = ( x - 1)Q( x -2)

=( x + 2)P( x - 2)( x + 2) = ( x - 1)Q( x - 2)

Suy ra : P = x - 1 ; Q = ( x + 2)2

b) Do hai phân thức bằng nhau , ta có :

( x + 2)P(x2 - 2x + 1) = ( x - 2)Q( x2 - 1)

= ( x + 2)P( x - 1)2 = ( x - 2)Q( x - 1)( x + 1)

Suy ra : P = ( x - 2)( x + 1) = x2 - x - 2

Q = ( x + 2)( x - 1) = x2 + x + 2

4 tháng 11 2017

Bài 2. a) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)

Xét : ( P + Q)S= PS + QS = QR + QS = Q( R + S)

-> \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)

b) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)

Xét : ( S - R)P = PS - PR = QR - PR = R( Q - P)

-> \(\dfrac{R-S}{R}=\dfrac{Q-P}{P}\)

- > \(\dfrac{R}{R-S}=\dfrac{P}{Q-P}\)

14 tháng 6 2017

Áp dụng bđt AM-GM cho 2 số không âm ta có:

\(\dfrac{1}{\sqrt{1.2006}}>\dfrac{1}{\dfrac{1+2006}{2}}=\dfrac{2}{2007}\)

TT: \(\dfrac{1}{\sqrt{2.2005}}>\dfrac{2}{2007}\)

...

\(\dfrac{1}{\sqrt{2006.1}}>\dfrac{2}{2007}\)

Cộng vế với vế ta được:

\(S>\dfrac{2}{2007}.2006\)

14 tháng 6 2017

ko đc tag tên có đc lm ko

5 tháng 11 2017

\(S=\dfrac{1}{2}-\dfrac{1}{3.7}-\dfrac{1}{7.11}-...........-\dfrac{1}{23.27}\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+..........+\dfrac{1}{23.27}\right)\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+.......+\dfrac{1}{23}-\dfrac{1}{27}\right)\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)

\(=\dfrac{1}{2}-\dfrac{8}{27}\)

\(=\dfrac{11}{54}\)

5 tháng 11 2017

Bạn xem lại đề bài đi chứ thế này thì cần j phải so sánh nx

Này nhé: đã có \(\dfrac{1}{2}=2^{-1}\)\(2^{-1}< 2^{51}\) là điều quá rõ rồi

Đã thế lại còn trừ liên hoàn từ... (đấy nói chung là phần sau) thì rõ ràng hiển nhiên là \(S< 2^{51}\) còn cái j nx

Chúc bn học tốt banhbanhbanhbanhbanh

AH
Akai Haruma
Giáo viên
12 tháng 4 2018

Lời giải:

Không biết đây có phải cách tối ưu nhất hay không nhưng tạm thời giờ mình nghĩ theo hướng này:

\(P=\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\)

Ghép cặp:

\(\frac{1}{2006}+\frac{1}{2014}=\frac{4020}{2006.2014}=\frac{2.2010}{(2010-4)(2010+4)}=\frac{2.2010}{2010^2-4^2}>\frac{2.2010}{2010^2}=\frac{2}{2010}\)

\(\frac{1}{2007}+\frac{1}{2013}=\frac{4020}{2007.2013}=\frac{2.2010}{(2010-3)(2010+3)}=\frac{2.2010}{2010^2-3^2}>\frac{2.2010}{2010^2}=\frac{2}{2010}\)

\(\frac{1}{2008}+\frac{1}{2012}=\frac{4020}{2008.2012}=\frac{2.2010}{(2010-2)(2010+2)}=\frac{2.2010}{2010^2-2^2}>\frac{2.2010}{2010^2}=\frac{2}{2010}\)

\(\frac{1}{2009}+\frac{1}{2011}=\frac{4020}{2009.2011}=\frac{2.2010}{(2010-1)(2010+1)}=\frac{2.2010}{2010^2-1^2}>\frac{2.2010}{2010^2}=\frac{2}{2010}\)

\(\frac{1}{2005}> \frac{1}{2010}\)

\(\frac{1}{2010}=\frac{1}{2010}\)

Cộng tất cả các kết quả trên lại:

\(P> \frac{2}{2010}+\frac{2}{2010}+\frac{2}{2010}+\frac{2}{2010}+\frac{1}{2010}+\frac{1}{2010}\)

\(\Leftrightarrow P> \frac{10}{2010}=\frac{1}{201}\Rightarrow \frac{1}{P}< 201\)

15 tháng 4 2018

ta có

1/2005>1/2014

1/2006>1/2014

...

1/2014=1/2014

=> 1/2005+1/2005+1/2006+1/2007+...+<1/2014.10

=>1/2005+1/2005+...+1/2014<10.1/2014<10.1/2010=1/201

=>P<1/201

=>1/P<201

14 tháng 7 2017

Hình như thiếu mũ 2007 -.- Sửa luôn nhóe :)

Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.

\(S_n=\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^n}\)

Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)

\(=\left(1+\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}\right)-\left(\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}+\dfrac{1}{a^n}\right)\)\(=1-\dfrac{1}{a^n}< 1\Rightarrow S_n< \dfrac{1}{a-1}\left(1\right)\)

Áp dụng BĐT ( 1 ) cho a = 2008 và mọi n = 2,3, ..., 2004 ta được:

\(B=\dfrac{1}{2008}+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}\right)^2+...+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}+...+\dfrac{1}{2008^{2007}}\right)^{2007}< \dfrac{1}{2007}+\left(\dfrac{1}{2007}\right)^2+...+\left(\dfrac{1}{2007}\right)^{2007}\left(2\right)\)

Lại áp dụng BĐT ( 1 ) cho a = 2007 và n = 2007, ta được:

\(\dfrac{1}{2007}+\dfrac{1}{2007^2}+...+\dfrac{1}{2007^{2007}}< \dfrac{1}{2006}=A\left(3\right)\)

Từ ( 2 ) và ( 3 ) => B < A.

14 tháng 7 2017

Thiệt ta là tui chép sách ngaingung