K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

Để D nhỏ nhất thì I x^2 + 5 I phải có kết quả dương nhỏ nhất .

=> x = 0 

I y + 4 I đạt giá trị nhỏ nhất khi y = -4

Vậy GTNN của biểu thức trên là 5 

 E đạt giá trị nhỏ nhất khi x = 1

y - 4 có giá trị nhỏ nhất là 0 nên y = -4

Vậy GTNN của biểu thức trên là 5

11 tháng 9 2017

Ta có: E=|x-1|+|x-2|+|x-3|+|x-4|=(|x-1|+|3-x|)+(|x-2|+|4-x|) \(\ge\) 2+2 = 4

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Leftrightarrow}2\le x\le3}\)

Vậy MinE = 4 khi \(2\le x\le3\)

NV
16 tháng 2 2020

https://hoc24.vn/hoi-dap/question/815591.html

Bạn tham khảo

17 tháng 2 2020

mơn bạn nhìu!!!!!!!!!!!!!!!

30 tháng 5 2016

\(\text{a)Để C đạt GTNN}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)

\(\Rightarrow C\ge-10\)

\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)

30 tháng 5 2016

b)\(\text{Để D đạt GTLN}\)

=>(2x-3)2+5 đạt GTNN

Mà (2x-3)2\(\ge\)5

\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)

13 tháng 1 2018

Ta có :

\(C=-\frac{2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\)

Ta có : | x + 4 | \(\ge\)0 ; ( y - 1.3 )104 \(\ge\)

\(\Rightarrow\) | x + 4 |  + ( y - 1.3 )104 \(\ge\)0

\(\Rightarrow\)| x + 4 |  + ( y - 1.3 )104 ​+ 18 \(\ge\)18

Dấu " = " xảy ra khi \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)

\(\Rightarrow\frac{2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\le\frac{2}{18}=\frac{1}{9}\)

\(\Rightarrow\)GTLN của ​\(\frac{2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\)là \(\frac{1}{9}\)

\(\Rightarrow\)\(-\frac{2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\)có GTNN của ​\(\frac{1}{9}\)

Vậy Cmin = \(\frac{1}{9}\)khi \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)

17 tháng 10 2015

\(\left(x-1\right)^2-5\ge-5=>min=-5\left(x-1\right)^2=0=>x-1=0=>x=1\)

vay GTNN la -5 tai x=1

6 tháng 11 2019

Ta có:

|x+7|\(\ge\)0

Dấu "=" xảy ra \(\Leftrightarrow\)|x+7|=0

\(\Leftrightarrow\)x+7=0

\(\Leftrightarrow\)x=-7

Thay x=-7 vào M ta được:

MinD=\(\frac{-15.\left(-7\right)-68}{3.\left(-7\right)+12}\)

=\(\frac{105-68}{-21+12}\)

=\(\frac{37}{-9}\)

Vậy MinD=\(\frac{37}{-9}\)\(\Leftrightarrow\)x=-7.

NV
5 tháng 11 2019

Chỉ tìm được với điều kiện x;a;b dương, còn bất kì thì chắc là chịu

5 tháng 11 2019

Mk cx nghĩ z. Mà cái đề nó ghi z ă. để mk hỏi thầy thử.