K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Ta có : 

\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)

\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)

\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)

\(A=8\left(x-2\right)^4+8\ge8\)

Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)

Đặt x-2=y

=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)

Khai triển A ta được 

\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)

\(=8y^4+8=8\left(y^4+1\right)\ge8\)

Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2

Vậy Amin=8 khi x=2

12 tháng 8 2019

P= 1-1/y^2-1/x^2+1/x^2y^2

ta cs: x+y=1

cs: xy=< (x+y)^2/4=1/4

=> 1/x^2y^2>=1/16

có: ...

12 tháng 8 2019

cố tử thần bí à :> 

\(\frac{1}{4}=\frac{\left(x+y\right)^2}{4}\ge\frac{\left(2\sqrt{xy}\right)^2}{4}=xy\)

\(P=\frac{1}{x^2y^2}-\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+1=\frac{1-\left(x^2+y^2\right)}{x^2y^2}+1=\frac{1-\left(x+y\right)^2}{x^2y^2}+\frac{2}{xy}+1\ge\frac{2}{\frac{1}{4}}+1=9\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

28 tháng 4 2018

\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)

\(A=\left|1-x\right|+\left|x-4\right|+\left|2-x\right|+\left|x-3\right|\)

Ta có: \(\left|1-x\right|+\left|x-4\right|\ge\left|1-x+x-4\right|=3\)

           \(\left|2-x\right|+\left|x-3\right|\ge\left|2-x+x-3\right|=1\) 

=> \(\left|1-x\right|+\left|x-4\right|+\left|2-x\right|+\left|x-3\right|\ge3+1=4\)

=> \(A\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(1-x\right)\left(x-4\right)\ge0\\\left(2-x\right)\left(x-3\right)\ge0\end{cases}}\)

                        \(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}}\)

                        \(\Leftrightarrow2\le x\le3\)

Vậy \(A_{min}=4\Leftrightarrow2\le x\le3\)

13 tháng 11 2016

a) GTNN = 0 khi x = -1

b) GTNN = 503 khi x =0

13 tháng 11 2016

b sai min=39 khi x=-2

2 tháng 9 2016

Ta có : \(B=x\left(x-3\right)\left(x+1\right)\left(x+4\right)\)

                \(=\left(x^2+x\right)\left(x^2-3x+4x-12\right)\)

                \(=\left(x^2+x\right)\left(x^2+x-12\right)\left(1\right)\)

Đặt \(x^2+x=t\)

\(\Rightarrow\left(1\right)\Leftrightarrow t\left(t-12\right)=t^2-12t=t^2-12t+36-36=\left(t-6\right)^2-36\)

Vì : \(\left(t-6\right)^2\ge0\)

\(\Rightarrow\left(t-6\right)^2-36\ge-36\)

Dấu " = " xảy ra khi \(t-6=0\)

                                   \(t=0+6\)

                                       \(t=6\)

\(\Rightarrow x^2+x+6\) \(x=2\) hoăc  \(x=-3\)

Vậy \(MIN_B=-36\) khi \(x=2;x=-3\)

2 tháng 9 2016

nhân lên r` đặt ẩn