cho biểu thức: \(A=\left(\frac{-1}{3}\right)+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
tính \(B=4\left|A\right|+\frac{1}{3^{100}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
\(=2-1+1-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}\)
\(=2-\frac{1}{100}=\frac{199}{100}\)
Có: \(1+2+3+...+100=\frac{101\left(100-1+1\right)}{2}=5050\)
\(\Rightarrow A=\frac{5050.\frac{-17}{60}.0}{\frac{199}{100}}=0\)
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
Câu 1 Tính
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{20}+...+\frac{1}{2352}+\frac{1}{2450}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{4.5}+...+\frac{1}{48.49}+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}=\frac{49}{50}\)
Câu 2 Tính
\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\)
\(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)
Câu 3
a) Ta có : M = 1 + 3 + 32 + 33 + ... + 3118 + 3119 (1)
=> 3M = 3 + 32 + 33 + 34 + ... + 3119 + 3120 (2)
Lấy (2) trừ (1) theo vế ta có :
3M - M = (3 + 32 + 33 + 34 + ... + 3119 + 3120) - ( M = 1 + 3 + 32 + 33 + ... + 3118 + 3119)
=> 2M = 3120 - 1
=> M = \(\frac{3^{120}-1}{2}\)
b) M = 1 + 3 + 32 + 33 + ... + 3118 + 3119
= (1 + 3 + 32) + (33 + 34 + 35) + ... + (3117 + 3118 + 3119)
= (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 3117(1 + 3 + 32)
= 13 + 33.13 + ... + 3117.13
= 13(1 + 33 + ... + 3117) \(⋮\)13
=> M \(⋮\)13
M = 1 + 3 + 32 + 33 + ... + 3118 + 3119
= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (3116 + 3117 + 3118 + 3119)
= (1 + 3 + 32 + 33) + 34(1 + 3 + 32 + 33) + ... + 3116(1 + 3 + 32 + 33)
= 40 + 34.40 + ... + 3116.40
= 40(1 + 34 + ... + 3116)
= 5.8.(1 + 34 + ... + 3116) \(⋮\)5
4) Tính
A = 2100 - 299 - 298 - ... - 22 - 2 - 1
=> 2A = 2101 - 2100 - 299 - 298 - 22 - 2 - 1
Lấy 2A trừ A theo vế ta có :
2A - A = (2101 - 2100 - 299 - 298 - 22 - 2 - 1) - (2100 - 299 - 298 - ... - 22 - 2 - 1)
=> A = 2101 - 2100 - 2100 + 1
=> A = 2101 - (2100 + 2100) + 1
=> A = 2101 - 2100 . 2 + 1
=> A = 1
Câu 5 a) C = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
= 99.100.101
=> C = 99.100.101 : 3 = 333300
b) Ta có : D = 22 + 42 + 62 + ... + 982
= 22(12 + 22 + 32 + ... + 492
= 22 .(12 + 22 + 32 + ... + 492)
= 22.(1.1 + 2.2 + 3.3 + ... + 49.49)
= 22.[1.(2 - 1) + 2..(3 - 1) + 3(4 - 1) + ... + 49(50 - 1)]
= 22.[(1.2 + 2.3 + 3.4 + ... + 49.50) - (1 + 2 + 3 + 4 + ... + 49)]
Đặt E = 1.2 + 2.3 + 3.4 + ... + 49.50
=> 3E = 1.2.3 + 2.3.3 + 3.4.3 + .... + 49.50.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50
= 49.50.51
=> E = 49.50.51/3 = 41650
Khi đó D = 22.[41650 - (1 + 2 + 3 + 4 + ... + 49)]
= 22.[41650 - 49(49 + 1)/2]
= 22.[41650 - 1225
= 22.40425
= 161700
=> D = 161700
\(\left(100+\frac{99}{2}+\frac{98}{3}+...+\frac{1}{100}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)-2\)
\(=\frac{\left[\left(\frac{99}{2}+1\right)+\left(\frac{98}{3}+1\right)+...+\left(\frac{1}{100}+1\right)+\frac{101}{101}\right]}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)
\(=\frac{\frac{101}{2}+\frac{101}{3}+...+\frac{101}{100}+\frac{101}{101}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)
\(=\frac{101.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)
\(=101-2\)( vì \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\ne0\))
\(=99\)
Tham khảo nhé~
\(A=\dfrac{-1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow\dfrac{1}{3}A=\dfrac{-1}{3^2}+\dfrac{1}{3^3}-\dfrac{1}{3^4}+...-\dfrac{1}{3^{100}}+\dfrac{1}{3^{101}}\)
Cộng vế với vế:
\(A+\dfrac{1}{3}A=\dfrac{-1}{3}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3^{100}}+\dfrac{1}{3^{101}}\)
\(\Rightarrow\dfrac{4}{3}A=\dfrac{-1}{3}+\dfrac{1}{3^{101}}\)
\(\Rightarrow A=\dfrac{1}{4}\left(\dfrac{1}{3^{100}}-1\right)\)
Do \(\dfrac{1}{3^{100}}< \dfrac{1}{3}< 1\Rightarrow A< 0\)
\(\Rightarrow\left|A\right|=-A=-\dfrac{1}{4}\left(\dfrac{1}{3^{100}}-1\right)=\dfrac{1}{4}\left(1-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow B=4\left|A\right|+\dfrac{1}{3^{100}}=1-\dfrac{1}{3^{100}}+\dfrac{1}{3^{100}}=1\)