Cho C = 2/n-1 , D= n+4/ n+1
a, Tìm n để C và D cùng tồn tại
b, Tìm n để C và D đều là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Vì p là số nguyên tố nên ta xét các trường hợp sau:
a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.
Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)
Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2
Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11
Lời giải:
Đặt $n+1995=a^2, n+2014=b^2$ với $a,b\in\mathbb{N}$
Khi đó:
$(n+2014)-(n+1995)=b^2-a^2$
$\Leftrightarrow 19=b^2-a^2=(b-a)(b+a)$
Vì $b,a$ là 2 số tự nhiên nên $b+a> b-a$. Vì $b+a>0, (b+a)(b-a)=19>0$ nên $b-a>0$
Suy ra $b+a=19; b-a=1$
$\Rightarrow b=10$
$\Rightarrow n+2014=b^2=10^2=100\Rightarrow n=-1914$
1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24 = 3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b)
Từ (a) và (b) => Mâu thuẫn
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau
Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau
Toán lớp 6 Ước chung
Gọi d e ƯC ( 2n+3;4n+1)
suy ra:
(2n+3) chia hết cho d , suy ra 4.(2n+3) chia hết cho d
suy ra 8n+3 chia hết cho d
suy ra
(4n+1) chia hết cho d , suy ra: 2.(4n+1) chia hết cho d
suy ra: 8n+1 chia hết cho d
suy ra : (8n+3)-(8n+1) chia hết cho d
suy ra: 2 chia hết cho d
suy ra : d thuộc Ư(2)
suy ra : d thuộc {1,2}
vì d thuộc Ư(2n+3) mà 2n+3 là số lẻ nên d là số lẻ
suy ra: d khác 2 suy ra: d=1, suy ra: ƯCLN (2n+3;4n+1) = 1
vậy : 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau
vì n+4 và n+11 đều là số chính phương nên có hệ
\(\hept{\begin{cases}n+4=a^2\\n+11=b^2\end{cases}}\)trừ phương trình ta có :\(b^2-a^2=7\Leftrightarrow\left(b-a\right)\left(b+a\right)=7\) do đó b-a và b+a là ước của 7 nên
a) đế C và D cùng tồn tại thì:
\(\hept{\begin{cases}n-1\ne0\\n+1\ne0\end{cases}}\) <=> \(\hept{\begin{cases}n\ne1\\n\ne-1\end{cases}}\)
Vậy....
b) (n là số nguyên)
để C là số nguyên thì: 2 chia hết cho n - 1
hay n - 1 thuộc Ư(2) = {-2; -1; 1; 2}
=> n = {-1; 0; 2; 3}
Do n # -1 nên n = { 0; 2; 3}
n = 0 thì D = 4 (t/m)
n = 2 thì D = 2 (t/m)
n = 3 thì D = 7/4 (loại)
Vậy n = {0; 2} thì C và D đều nguyên
a) C và D cùng tồn tại khi \(n\ne\pm1\)
b) Để C là số nguyên
=> 2 chia hết cho n - 1
=> n - 1 thuộc Ư(2) ={1;-1;2;-2}
nếu n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n-1 = 2 => n = 3
n -1 = - 2 => n = -1
Để \(D=\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=1+\frac{3}{n+1}\)là số nguyên
=> 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3)={1;-1;3;-3}
nếu n + 1 = 1 => n = 0 (TM)
n + 1 = - 1 => n = - 2 (Loại)
n + 1 = 3 => n = 2 (TM)
n + 1 = - 3 => n = - 4 (Loại)
KL: n = 0 hoặc n = - 2 thì C và D đều là số nguyên