K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

Gọi a/b với a > 0, b > 0 là phân số đã cho và b/a là phân số nghịch đảo của nó . Không mất tính tổng quát giả sử 0 < a ≤ b.

Đặt b = a + m (m ∈ Z, m ≥ 0)

Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Và Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 (dấu "=" xảy ra khi m = 0)

Suy ra: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Từ (1) và (2) suy ra:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6, (dấu "=" xảy ra khi m = 0 hay a = b )

17 tháng 4 2020

ko bik

2 tháng 3 2017

Giả sử phân số và nghịch đảo của nó là: \(\frac{a}{b};\frac{b}{a}\)

Do phân số dương nên( a;b) cùng dấu hay a.b>0

Ta có:

\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)

Do đó: \(\frac{a}{b}+\frac{b}{a}\ge2\)

15 tháng 5 2017

Gọi phân số dương là \(\dfrac{a}{b}\) . ( Không mất tính tổng quát )

Cho \(a>0,\) \(b>0\)\(a\ge b\) . Ta có thể viết \(a=b+m\left(m\ge0\right)\) .

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}=1+\dfrac{m}{b}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}=1+\dfrac{m+b}{b+m}=2\)\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

Dấu đẳng thức xảy ra khi \(a=b\left(m=0\right)\)

1 tháng 5 2018

Gọi a/b với a > 0, b > 0 là phân số đã cho và b/a là phân số nghịch đảo của nó . Không mất tính tổng quát giả sử 0 < a ≤ b.

Đặt b = a + m (m ∈ Z, m ≥ 0)

Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 (dấu "=" xảy ra khi m = 0)

Suy ra: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Từ (1) và (2) suy ra:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6, (dấu "=" xảy ra khi m = 0 hay a = b )

14 tháng 3 2016

 Gọi phân số đó là a/b (ĐK: a,b # 0, a và b cùng dấu ) 
a/b + b/a ≥ 2 <=> (a² + b ²)/ab ≥ 2 
<=> a² - 2ab + b² ≥ 0 
<=> ( a – b )² ≥ 0 ( Luôn đúng với mọi a, b) 
=> Đpcm 

 

19 tháng 8 2016

mk giải đc nè, tick mk nha!!

Gọi phân số  dương là a/b. Ko mất tính tổng quát, giả sử như: a>0, b>0 và a  > b. Ta có thể viết a=b+m ( m > 0). Ta có:

a/b+b/a=b+m/b+b/m+b=1+m/b+b/b+m >  1+ m/b+m+b/b+m=1+m+b/b+m=2.

Vậy a/b+b/a > 2.

 

14 tháng 3 2017

nói thật thì đó là toán lớp 8, lớp 9 chứ k phải lớp 6

gọi phân số đó là a/b, vì phân số dương => a.b dương. Ta phải đi chứng minh a/b+b/a lớn hơn hoặc bằng 2

\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}=\frac{a^2-ab-ab+b^2}{ab}+2=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}+2\)

\(=\frac{\left(a-b\right)^2}{ab}+2\ge2\)(vì (a-b)^2 lớn hơn hoặc bằng 0 và ab>0 => phân số đầu tiên không âm, suy ra tổng không nhỏ hơn 2)

Ai chs opoke đại chiên lh mik nha! Đỏi lấy nick olm hoặc cho mik

Gọi phân số dương là \(\dfrac{a}{b}\) và phân số nghịch đảo của nó là \(\dfrac{b}{a}\)

với điều kiện:  a > 0; b > 0; a ≥ b 

=>  a = b + m (m ≥ 0)

Theo đề bài ta có:

\(\dfrac{a}{b}\) + \(\dfrac{b}{a}\) = \(\dfrac{b+m}{b}\) + \(\dfrac{b}{b+m}\) = 1 + \(\dfrac{m}{b}\) + \(\dfrac{b}{b+m}\) ≥ 1 + \(\dfrac{m}{b+m}\) + \(\dfrac{b}{b+m}\) = 1 + \(\dfrac{m+b}{m+b}\) = 2

=> \(\dfrac{a}{b}\) + \(\dfrac{b}{a}\) ≥ 2    (điều phải chứng minh)

_______________________________________________

Có gì không đúng nhắn mình nha bạn :))

 

10 tháng 6 2015

Giả sử phân số và nghịch đảo của nó là \(\frac{a}{b};\frac{b}{a}\)

Do phân số dương nên \(a;b\)cùng dấu hay \(a.b>0\)

Ta có \(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)

Do đó \(\frac{a}{b}+\frac{b}{a}\ge2\)

15 tháng 2 2018

Đúng rùi

22 tháng 3 2019

Ta gọi phân số đó là \(\frac{a}{b}\) ,vì phân số dương\(\Rightarrow a.b=\)dương .

Ta chúng minh \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}=\frac{a^2-ab-ab+b^2}{ab}+2=\frac{a\left(a-b\right)-b\left(a-b\right)+2}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}+2\ge2\)

Vì :

\(\left(a-b\right)^2\ge0\) và \(ab>0\)

\(\Rightarrow\)Phân số không âm .

\(\Rightarrow\)Tổng không bé hơn 2