K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Hình thoi

21 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Nối BD, ta có AB = AD (gt)

Suy ra ∆ ABD cân tại A

Mà ∠ A = 60 0  ⇒  ∆ ABD đều

⇒  ∠ (ABD) =  ∠ D 1 =  60 0  và BD = AB

Suy ra: BD = BC = CD

⇒ ∆ CBD đều ⇒  ∠ D 2 =  60 0

Xét  ∆ BAM và  ∆ BDN,ta có:

AB = BD ( chứng minh trên)

∠ A =  ∠ D 2  =  60 0

AM = DN (giả thiết)

Do đó  ∆ BAM =  ∆ BDN ( c.g.c) ⇒  ∠ B 1 =  ∠ B 3  và BM = BN

Suy ra ΔBMN cân tại B.

Mà  ∠ B 2 + ∠ B 1  =  ∠ (ABD) =  60 0

Suy ra:  ∠ B 2 +  ∠ B 3  =  ∠ B 2  +  ∠ B 1  = 60° hay  ∠ (MBN) =  60 0

Vậy  ∆ BMN đều

16 tháng 11 2021

Vì AE=CF và AE//CF (AB//CD do hbh ABCD) nên AECF là hbh

\(\left\{{}\begin{matrix}AE=CF\\AM=CN\\\widehat{A}=\widehat{C}\left(hbh.ABCD\right)\end{matrix}\right.\Rightarrow\Delta AME=\Delta CNF\left(c.g.c\right)\\ \Rightarrow ME=NF\left(4\right)\\ \left\{{}\begin{matrix}AE=CF\\AB=CD\end{matrix}\right.\Rightarrow AB-AE=CD-CF\Rightarrow BE=DF\left(1\right)\\ \left\{{}\begin{matrix}AM=CN\\AD=BC\end{matrix}\right.\Rightarrow AD-AM=CN-BC\Rightarrow DM=BN\left(2\right)\)

ABCD là hbh nên \(\widehat{B}=\widehat{D}\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\Delta DMN=\Delta BFE\left(c.g.c\right)\\ \Rightarrow MN=EF\left(5\right)\)

(4)(5) suy ra MENF là hbh

 

TH
Thầy Hùng Olm
Manager VIP
25 tháng 2 2023

Diện tích hình chữ nhật ABCD là: 12 x 18 = 216 (cm2)

Diện tích tam giác ABM là: (18 x 12:2):2 = 54 (cm2)

Diện tích tam giác ADN là: (12 x18:2):2 = 54 (cm2)

Diện tích tam giác MCN là: (12:2)x(18:2) : 2 = 27 (cm2)

Diện tích tam giác AMN là: 216 - (54+54+27) =  81 (cm2)