\(2018^{13}-2018^{12}.......2018^{11}2018^{10}\)
so sánh và giải thích
giúp với nhé. thank
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(A=\frac{2018^{13}+1}{2018^{14}+1}\); \(B=\frac{2018^{2012}+1}{2018^{2013}+1}\)
Ta có :
\(2018A=\frac{2018.\left(2018^{13}+1\right)}{2018^{14}+1}\)
\(2018A=\frac{2018^{14}+2018}{2018^{14}+1}=\frac{2018^{14}+1+2017}{2018^{14}+1}=\frac{2018^{2014}+1}{2018^{14}+1}+\frac{2017}{2018^{14}+1}=1+\frac{2017}{2018^{14}+1}\)
\(2018B=\frac{2018.\left(2018^{12}+1\right)}{2018^{13}+1}\)
\(2018B=\frac{2018^{13}+2018}{2018^{13}+1}=\frac{2018^{13}+1+2017}{2018^{13}+1}=\frac{2018^{13}+1}{2018^{13}+1}+\frac{2017}{2018^{13}+1}=1+\frac{2017}{2018^{13}+1}\)
Vì 201814 + 1 > 201813 + 1 nên \(\frac{2017}{2018^{14}+1}< \frac{2017}{2018^{13}+1}\)
\(\Rightarrow1+\frac{2017}{2018^{14}+1}< 1+\frac{2017}{2018^{13}+1}\)Hay : A < B
Vậy A < B
Đặt \(A=\frac{2018^{13}+1}{2018^{14}+1}\)và \(B=\frac{2018^{12}+1}{2018^{13}+1}\)
Ta có :
\(2018A=\frac{\left(2018^{13}+1\right)\times2018}{2018^{14}+1}\) \(2018B=\frac{\left(2018^{12}+1\right)\times2018}{2018^{13}+1}\)
\(2018A=\frac{2018^{14}+2018}{2018^{14}+1}\) \(2018B=\frac{2018^{13}+2018}{2018^{13}+1}\)
\(2018A=\frac{2018^{14}+1+2017}{2018^{14}+1}\) \(2018B=\frac{2018^{13}+1+2017}{2018^{13}+1}\)
\(2018A=1+\frac{2017}{2018^{14}+1}\) \(2018B=1+\frac{2017}{2018^{13}+1}\)
Vì \(\frac{2017}{2018^{14}+1}< \frac{2017}{2018^{13}+1}\)
\(\Rightarrow2018A< 2018B\)
\(\Rightarrow A< B\)
Vậy : \(\frac{2018^{13}+1}{2018^{14}+1}< \frac{2018^{12}+1}{2018^{13}+1}\)
Ta có: \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)\(\Rightarrow10A=\frac{10^{2017}+2018.10}{10^{2017}+2018}=\frac{10^{2017}+2018+2018.9}{10^{2017}+2018}=1+\frac{2018.9}{10^{2017}+2018}\)
Tương tự ta có: \(10B=1+\frac{2018.9}{10^{2018}+2018}\)
Vì \(2017< 2018\)\(\Rightarrow10^{2017}< 10^{2018}\)\(\Rightarrow10^{2017}+2018< 10^{2018}+2018\)
\(\Rightarrow\frac{2018.9}{10^{2017}+2018}>\frac{2018.9}{10^{2018}+2018}\)\(\Rightarrow1+\frac{2018.9}{10^{2017}+2018}>1+\frac{2018.9}{10^{2018}+2018}\)
hay \(10A>10B\)\(\Rightarrow A>B\)
Vậy \(A>B\)
Ta có : \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}=\frac{10^{2017}+2018+18162}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\)
Ta có : \(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow\frac{10^{2018}+20180}{10^{2018}+2018}=\frac{10^{2018}+2018+18162}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\)
Vì \(10^{2017}+2018< 10^{2018}+2018\) nên \(\frac{18162}{10^{2017}+2018}>\frac{18162}{10^{2018}+2018}\)
\(\Rightarrow1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2017}+2018}\Rightarrow10A>10B\Rightarrow A>B\)
Vậy A > B
Làm khác bạn kia 1 xíu à
ta có: 201810+201811=201810.(1+2018) = 201810.2019
201911=201910.2019
=> 201810<201910 => 201810.2019 < 201910.2019
=> 201810+201811<201911
ta có:
201810+201811=201810.(1+2018) = 201810.2019
201911=201910.2019
=> 201810<201910 => 201810.2019 < 201910.2019
=> 201810+201811<201911
\(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}\)
\(=\frac{10^{2017}+2018+18162}{10^{2017}+2018}\)
\(=\frac{10^{2017}+2018}{10^{2017}+2018}+\frac{18162}{10^{2017}+2018}\)
\(=1+\frac{18162}{10^{2017}+2018}\)
\(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow10B=\frac{10^{2018}+20180}{10^{2018}+2018}\)
\(=\frac{10^{2018}+2018+18162}{10^{2018}+2018}\)
\(=\frac{10^{2018}+2018}{10^{2018}+2018}+\frac{18162}{10^{2018}+2018}\)
\(=1+\frac{18162}{10^{2018}+2018}\)
Ta thấy: \(1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2018}+2018}\)
=> 10A > 10B
=> A > B
\(\frac{2015}{2018^3}-\frac{2017}{2018^3}=-\frac{2}{2018^3}\) \(\frac{2015}{2018^4}-\frac{2017}{2018^4}=-\frac{2}{2018^4}\)
vì \(-\frac{2}{2018^3}< -\frac{2}{2018^4}\Rightarrow\frac{2015}{2018^3}-\frac{2017}{\cdot2018^3}< \frac{2015}{2018^4}-\frac{2017}{2018^4}\)
chuyển vế ta đc : \(\frac{2015}{2018^3}+\frac{2017}{2018^4}< \frac{2017}{2018^3}+\frac{2015}{2018^4}\)
A = 2015.2018/2018^4 + 2017/2018^4 = 2015.2018+2017/2018^4
B=2017.2018/2018^4 + 2015/2018^4 = 2017.2018+2015/2018^4
Vì 2015.2018+2017<2017.2018+2015 nên A<B
\(+)A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(10A=\frac{10^{2017}+20180}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\left(1\right)\)
\(+)10B=\frac{10^{2018}+20180}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\left(2\right)\)
Từ (1),(2)=> \(\frac{18162}{10^{2017}+2018} >\frac{18162}{10^{2018}+2018}\)
=> 10A>10B
=>A>B
\(2018^{13}-2018^{12}=2018^{12}\left(2018-1\right)=2018^{12}.2017\)
\(2018^{11}.2018^{10}=2018^{12}.2018^9\)
Nhận thấy: \(2017< 2018^9\)=> \(2018^{12}.2017< 2018^{12}.2018^9\)
hay \(2018^{13}-2018^{12}< 2018^{11}.2018^{10}\)
Mik đang nghĩ là vậy chứ chắc giải thik ko đúng đâu...
\(2018^{13}-2018^{12}< 2018^{11}2018^{10}\)
Vì : Phép tính \(2018^{13}-2018^{12}\) đã trừ đi thì chỉ còn một số nhỏ hơn phép tính \(2018^{11}2018^{10}\)
Mik nghĩ thôi nhé, chắc ko đúng đâu
k cho mik nhé bn