Tìm số dư của A=3\(^{2020}\) +4\(^{2020}\) khi chia cho 11, khi chia cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,3A=3+3^2+3^3+...+3^2020
=>3A-A=(3+3^2+3^2+3^3+...+3^2021)-(1+3+3^2+3^3+...+3^2020)
=>2A=3^2021-1=>A=\(\frac{3^{2021}-1}{2}\)
Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)
- Chứng minh A chia hết cho 2:
+) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2
+) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2
- Chứng minh A chia hết cho 3:
+) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3
+) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:
+) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5
+) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5
Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)
\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7
A = \(2020^{2020}-317^{17}+213^{203}\)
Ta có: 2020 chia hết cho 5
317 chia 5 dư 2 => \(317^{17}\)có cùng số dư với \(2^{17}\)khi chia cho 5 mà \(2^{17}=2^{16}.2=4^8.2=16^4.2\) chia 5 sư 2
=> \(317^{17}\) chia 5 sư 2
\(213\)chia 5 dư 3 => \(213^{203}\)có cùng số dư với \(3^{203}\)khi chia cho 5 mà \(3^{203}=3^{202}.3=9^{101}.3=9^{100}.9.3=81^{50}.27\) chia 5 dư 2 vì \(81^{50}\)chia 5 dư 1 và 27 chia 5 dư 2
=> \(A\)chia 5 dư 0 - 2 + 2 = 0