K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)

- Chứng minh A chia hết cho 2:
 +) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2

 +) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2

- Chứng minh A chia hết cho 3:
 +) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3

 +) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:

 +) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5

 +) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5

Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)

\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7

12 tháng 8 2020

* Ta c/m: \(x^5-x⋮30\forall x\in Z\)

+ \(x^5-x=x\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)x\left(x+1\right)\left(x^2-4+5\right)\)

\(=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5\left(x-1\right)x\left(x+1\right)\)

\(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích 5 số nguyên liên tiếp

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮5\\\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮2\\\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮3\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮30\) ( do 2,3,5 đôi một nguyên tố cùng nhau ) (1)

+ \(\left(x-1\right)x\left(x+1\right)\) là tích 3 số nguyên liên tiếp

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)x\left(x+1\right)⋮2\\\left(x-1\right)x\left(x+1\right)⋮3\end{matrix}\right.\) \(\Rightarrow\left(x-1\right)x\left(x+1\right)⋮6\) ( do \(\left(2,3\right)=1\) )

\(\Rightarrow5\left(x-1\right)x\left(x+1\right)⋮30\) (2)

Từ (1) và (2) => đpcm

Trở lại bài toán ta có:

\(P-M=a^{2019}\left(a^5-a\right)+b^{2019}\left(b^5-b\right)+c^{2019}\left(c^5-c\right)⋮30\)

( do \(a^5-a⋮30,b^5-b⋮30,c^5-c⋮30\) )

=> P và M có cùng số dư khi chia 30

=> P chia 30 dư 7

NM
3 tháng 9 2021

ta có : 

\(A=\left(1^3+2^3\right)+3^3+\left(4^3+5^3\right)+..+2019^3+2020^3\)

mà \(\hept{\begin{cases}1^3+2^3⋮\left(1+2\right)⋮3\\...\\2017^3+2018^3:⋮\left(2017+2018\right)⋮3\end{cases}}\)

vậy :\(A\equiv2020^3mod3\equiv1mod3\) vậy A chia 3 dư 1

30 tháng 9 2019

n^2 chia cho:

+) 3 dư 0,1

+) 4 dư 0,1,3 (tương tự)

n^3:

+)7 dư 0,1,6

+) 5 dư 0,1,2,3,4

Bạn muốn giải chi tiết thì đặt n=3k;3k+1 chẳng hạn

21 tháng 12 2021

Chọn D