K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

\(\left\{{}\begin{matrix}x+3\sqrt{xy+x-y^{2-y}}=5y+4\left(1\right)\\\sqrt{4y^2-x-2}+\sqrt{y-1}=x-1\left(2\right)\end{matrix}\right.\)

ĐK: x\(\ge1,y\ge1\),x\(\ge y\)

(1)\(\Leftrightarrow\left(x-y\right)+3\sqrt{x\left(y+1\right)-y\left(y+1\right)}-4y-4=0\Leftrightarrow\left(x-y\right)+3\sqrt{\left(x-y\right)\left(y+1\right)}-4\left(y+1\right)=0\left(3\right)\)

Chia 2 vế của (3) cho y+1>0 thì (3) và đặt t=\(\sqrt{\dfrac{x-y}{y+1}}\)(t\(\ge0\))

Vậy (3)\(\Leftrightarrow t^2+3t-4=0\Leftrightarrow t^2-t+4t-4=0\Leftrightarrow t\left(t-1\right)+4\left(t-4\right)=0\Leftrightarrow\left(t-1\right)\left(t+4\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}t-1=0\\t+4=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=1\left(tm\right)\\t=-4\left(ktm\right)\end{matrix}\right.\)

Ta có t=1\(\Leftrightarrow\sqrt{\dfrac{x-y}{y+1}}=1\Leftrightarrow x-y=y+1\Leftrightarrow x=2y+1\)

Thay vào phương trình (2)\(\Leftrightarrow\sqrt{4y^2-\left(2y+1\right)-2}+\sqrt{y-1}=2y+1-1\Leftrightarrow\sqrt{4y^2-2y-3}+\sqrt{y-1}=2y\Leftrightarrow\left(\sqrt{4y^2-2y-3}-3\right)+\left(\sqrt{y-1}-1\right)=2\left(y-2\right)\Leftrightarrow\dfrac{4y^2-2y-12}{\sqrt{4y^2-2y-3}+3}+\dfrac{y-2}{\sqrt{y-1}+1}-2\left(y-2\right)=0\Leftrightarrow\dfrac{2\left(y-2\right)\left(2y+3\right)}{\sqrt{4y^2-2y-3}+3}+\dfrac{y-2}{\sqrt{y-1}+1}-2\left(y-2\right)=0\Leftrightarrow\left(y-2\right)\left[\dfrac{2\left(2y+3\right)}{\sqrt{4y^2-2y-3}+3}+\dfrac{1}{\sqrt{y-1}+1}-2\right]=0\Leftrightarrow\)\(\left[{}\begin{matrix}y-2=0\left(4\right)\\\dfrac{2\left(2y+3\right)}{\sqrt{4y^2-2y-3}+3}+\dfrac{1}{\sqrt{y-1}+1}-2=0\left(5\right)\end{matrix}\right.\)

(4)\(\Leftrightarrow y=2\Leftrightarrow x=5\left(tm\right)\)

(5)\(\Leftrightarrow\dfrac{2\left(2y+3\right)}{\sqrt{4y^2-2y-3}+3}=2y+3-\sqrt{y+1}< 2y+3\Rightarrow\dfrac{2\left(2y+3\right)}{\sqrt{4y^2-2y-3}+3}\ge2\Leftrightarrow\)VT của (5)>2\(\Rightarrow\) vô nghiệm

Vậy (x;y)=(5;2)

NV
5 tháng 3 2021

ĐKXĐ: ...

\(y\left(y^2-5y+4\right)+y^2=\left(y^2-5y+4\right)\sqrt{x+1}+x+1\)

\(\Leftrightarrow\left(y^2-5y+4\right)\left(y-\sqrt{x+1}\right)+\left(y+\sqrt{x+1}\right)\left(y-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left(y-\sqrt{x+1}\right)\left[\left(y-2\right)^2+\sqrt{x+1}\right]=0\)

\(\Leftrightarrow y=\sqrt{x+1}\Rightarrow y^2=x+1\)

Thế xuống pt dưới:

\(2\sqrt{x^2-3x+3}+6x-7=\left(x+1\right)\left(x-1\right)^2+x\sqrt{3x-2}\)

\(\Leftrightarrow2\left(\sqrt{x^2-3x+3}-1\right)+x\left(x-\sqrt{3x-2}\right)=x^3-7x+6\)

\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{\sqrt{x^2-3x+3}+1}+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=\left(x+3\right)\left(x^2-3x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}=x+3\left(1\right)\end{matrix}\right.\)

Xét (1) với \(x\ge\dfrac{3}{2}\):

\(\dfrac{2}{\sqrt{x^2-3x+3}+1}\le8-4\sqrt{3}< 1\)

\(\sqrt{3x-2}\ge0\Rightarrow\dfrac{x}{x+\sqrt{3x-2}}\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}< 2\\x+3>2\end{matrix}\right.\) 

\(\Rightarrow\left(1\right)\) vô nghiệm

29 tháng 4 2023

\(\left\{{}\begin{matrix}2\left(xy+1\right)=x\left(x+y\right)+2\left(1\right)\\3xy-x+3=\sqrt{x+2y+1}+\sqrt{x+4y+4}\left(2\right)\end{matrix}\right.\)

Đk: \(x+2y+1\ge0,x+4y+4\ge0\)

\(\left(1\right)\Rightarrow2xy+2=x^2+xy+2\)

\(\Leftrightarrow x^2-xy=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=y\end{matrix}\right.\) 

*Khi \(x=0\), thay vào (2) ta được pt: \(\sqrt{2y+1}+\sqrt{4y+4}=3\)

Giải bằng phương pháp bình phương 2 vế ta được \(y=0\).

Thay \(x=y=0\) vào đk hoàn toàn thỏa mãn.

*Khi \(x=y\), thay vào (2) ta được pt: \(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\) .

Mình không giải được nhưng pt có nghiệm \(x=0\) nên suy ra \(y=0\)Vậy hệ pt ban đầu có nghiệm \(\left(x,y\right)=\left(0;0\right)\).

 

1) Ta có: \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}-3\sqrt{y}=15\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\sqrt{x}=33\\3\sqrt{x}-\sqrt{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

2) Ta có: \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{x+3}+4\sqrt{y+1}=-4\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y+1}=0\\\sqrt{x+3}-2\sqrt{y+1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

29 tháng 4 2023

4. Đk: \(x,y\ge0\)

\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\left(1\right)\)

Ta có: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}\ge0+1=1\\\sqrt{y}+\sqrt{x+1}\ge0+1=1\end{matrix}\right.\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=0,\sqrt{x+1}=1\\\sqrt{y}=0,\sqrt{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)<tmđk>

Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(0;0\right)\)

1 tháng 1 2019

Ai đó giúp em phần a, với ạ !!

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu

12 tháng 5 2021

phân tích pt1 thành (x+2)(x2+y2-1)=0

\(\Rightarrow\)x= -2 hoặc y2=1-x2

Nếu x=-2 thay vào pt2

Nếu y2=1-x2.Thay vào pt2 để đưa về biến x

Nhân liên hợp 2 vế vs \(\sqrt{2-x^2}-1\)